ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  icnpimaex GIF version

Theorem icnpimaex 14114
Description: Property of a function continuous at a point. (Contributed by FL, 31-Dec-2006.) (Revised by Jim Kingdon, 28-Mar-2023.)
Assertion
Ref Expression
icnpimaex (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ) ∧ 𝐴 ∈ 𝐾 ∧ (πΉβ€˜π‘ƒ) ∈ 𝐴)) β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ π‘₯) βŠ† 𝐴))
Distinct variable groups:   π‘₯,𝐴   π‘₯,𝐹   π‘₯,𝐽   π‘₯,𝐾   π‘₯,𝑃   π‘₯,𝑋   π‘₯,π‘Œ

Proof of Theorem icnpimaex
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpr3 1007 . 2 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ) ∧ 𝐴 ∈ 𝐾 ∧ (πΉβ€˜π‘ƒ) ∈ 𝐴)) β†’ (πΉβ€˜π‘ƒ) ∈ 𝐴)
2 eleq2 2253 . . . 4 (𝑦 = 𝐴 β†’ ((πΉβ€˜π‘ƒ) ∈ 𝑦 ↔ (πΉβ€˜π‘ƒ) ∈ 𝐴))
3 sseq2 3194 . . . . . 6 (𝑦 = 𝐴 β†’ ((𝐹 β€œ π‘₯) βŠ† 𝑦 ↔ (𝐹 β€œ π‘₯) βŠ† 𝐴))
43anbi2d 464 . . . . 5 (𝑦 = 𝐴 β†’ ((𝑃 ∈ π‘₯ ∧ (𝐹 β€œ π‘₯) βŠ† 𝑦) ↔ (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ π‘₯) βŠ† 𝐴)))
54rexbidv 2491 . . . 4 (𝑦 = 𝐴 β†’ (βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ π‘₯) βŠ† 𝑦) ↔ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ π‘₯) βŠ† 𝐴)))
62, 5imbi12d 234 . . 3 (𝑦 = 𝐴 β†’ (((πΉβ€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ π‘₯) βŠ† 𝑦)) ↔ ((πΉβ€˜π‘ƒ) ∈ 𝐴 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ π‘₯) βŠ† 𝐴))))
7 simpr1 1005 . . . . 5 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ) ∧ 𝐴 ∈ 𝐾 ∧ (πΉβ€˜π‘ƒ) ∈ 𝐴)) β†’ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ))
8 iscnp 14102 . . . . . 6 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) β†’ (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ) ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ 𝐾 ((πΉβ€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ π‘₯) βŠ† 𝑦)))))
98adantr 276 . . . . 5 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ) ∧ 𝐴 ∈ 𝐾 ∧ (πΉβ€˜π‘ƒ) ∈ 𝐴)) β†’ (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ) ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ 𝐾 ((πΉβ€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ π‘₯) βŠ† 𝑦)))))
107, 9mpbid 147 . . . 4 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ) ∧ 𝐴 ∈ 𝐾 ∧ (πΉβ€˜π‘ƒ) ∈ 𝐴)) β†’ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ 𝐾 ((πΉβ€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ π‘₯) βŠ† 𝑦))))
1110simprd 114 . . 3 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ) ∧ 𝐴 ∈ 𝐾 ∧ (πΉβ€˜π‘ƒ) ∈ 𝐴)) β†’ βˆ€π‘¦ ∈ 𝐾 ((πΉβ€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ π‘₯) βŠ† 𝑦)))
12 simpr2 1006 . . 3 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ) ∧ 𝐴 ∈ 𝐾 ∧ (πΉβ€˜π‘ƒ) ∈ 𝐴)) β†’ 𝐴 ∈ 𝐾)
136, 11, 12rspcdva 2861 . 2 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ) ∧ 𝐴 ∈ 𝐾 ∧ (πΉβ€˜π‘ƒ) ∈ 𝐴)) β†’ ((πΉβ€˜π‘ƒ) ∈ 𝐴 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ π‘₯) βŠ† 𝐴)))
141, 13mpd 13 1 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ) ∧ 𝐴 ∈ 𝐾 ∧ (πΉβ€˜π‘ƒ) ∈ 𝐴)) β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ π‘₯) βŠ† 𝐴))
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104   ↔ wb 105   ∧ w3a 980   = wceq 1364   ∈ wcel 2160  βˆ€wral 2468  βˆƒwrex 2469   βŠ† wss 3144   β€œ cima 4644  βŸΆwf 5227  β€˜cfv 5231  (class class class)co 5891  TopOnctopon 13913   CnP ccnp 14089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4308  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5233  df-fn 5234  df-f 5235  df-fv 5239  df-ov 5894  df-oprab 5895  df-mpo 5896  df-1st 6159  df-2nd 6160  df-map 6668  df-top 13901  df-topon 13914  df-cnp 14092
This theorem is referenced by:  iscnp4  14121  cnpnei  14122  cnptopco  14125  cncnp  14133  cnptopresti  14141  lmtopcnp  14153  txcnp  14174
  Copyright terms: Public domain W3C validator