Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  icnpimaex GIF version

Theorem icnpimaex 12453
 Description: Property of a function continuous at a point. (Contributed by FL, 31-Dec-2006.) (Revised by Jim Kingdon, 28-Mar-2023.)
Assertion
Ref Expression
icnpimaex (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴𝐾 ∧ (𝐹𝑃) ∈ 𝐴)) → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐽   𝑥,𝐾   𝑥,𝑃   𝑥,𝑋   𝑥,𝑌

Proof of Theorem icnpimaex
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpr3 990 . 2 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴𝐾 ∧ (𝐹𝑃) ∈ 𝐴)) → (𝐹𝑃) ∈ 𝐴)
2 eleq2 2204 . . . 4 (𝑦 = 𝐴 → ((𝐹𝑃) ∈ 𝑦 ↔ (𝐹𝑃) ∈ 𝐴))
3 sseq2 3127 . . . . . 6 (𝑦 = 𝐴 → ((𝐹𝑥) ⊆ 𝑦 ↔ (𝐹𝑥) ⊆ 𝐴))
43anbi2d 460 . . . . 5 (𝑦 = 𝐴 → ((𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦) ↔ (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝐴)))
54rexbidv 2440 . . . 4 (𝑦 = 𝐴 → (∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦) ↔ ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝐴)))
62, 5imbi12d 233 . . 3 (𝑦 = 𝐴 → (((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) ↔ ((𝐹𝑃) ∈ 𝐴 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝐴))))
7 simpr1 988 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴𝐾 ∧ (𝐹𝑃) ∈ 𝐴)) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))
8 iscnp 12441 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))))
98adantr 274 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴𝐾 ∧ (𝐹𝑃) ∈ 𝐴)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))))
107, 9mpbid 146 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴𝐾 ∧ (𝐹𝑃) ∈ 𝐴)) → (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦))))
1110simprd 113 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴𝐾 ∧ (𝐹𝑃) ∈ 𝐴)) → ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))
12 simpr2 989 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴𝐾 ∧ (𝐹𝑃) ∈ 𝐴)) → 𝐴𝐾)
136, 11, 12rspcdva 2799 . 2 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴𝐾 ∧ (𝐹𝑃) ∈ 𝐴)) → ((𝐹𝑃) ∈ 𝐴 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝐴)))
141, 13mpd 13 1 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴𝐾 ∧ (𝐹𝑃) ∈ 𝐴)) → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝐴))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   ∧ w3a 963   = wceq 1332   ∈ wcel 1481  ∀wral 2417  ∃wrex 2418   ⊆ wss 3077   “ cima 4553  ⟶wf 5130  ‘cfv 5134  (class class class)co 5785  TopOnctopon 12250   CnP ccnp 12428 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4055  ax-pow 4107  ax-pr 4141  ax-un 4365  ax-setind 4462 This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2692  df-sbc 2915  df-csb 3009  df-dif 3079  df-un 3081  df-in 3083  df-ss 3090  df-pw 3518  df-sn 3539  df-pr 3540  df-op 3542  df-uni 3746  df-iun 3824  df-br 3939  df-opab 3999  df-mpt 4000  df-id 4225  df-xp 4556  df-rel 4557  df-cnv 4558  df-co 4559  df-dm 4560  df-rn 4561  df-res 4562  df-ima 4563  df-iota 5099  df-fun 5136  df-fn 5137  df-f 5138  df-fv 5142  df-ov 5788  df-oprab 5789  df-mpo 5790  df-1st 6049  df-2nd 6050  df-map 6555  df-top 12238  df-topon 12251  df-cnp 12431 This theorem is referenced by:  iscnp4  12460  cnpnei  12461  cnptopco  12464  cncnp  12472  cnptopresti  12480  lmtopcnp  12492  txcnp  12513
 Copyright terms: Public domain W3C validator