ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lbfzo0 Unicode version

Theorem lbfzo0 10303
Description: An integer is strictly greater than zero iff it is a member of  NN. (Contributed by Mario Carneiro, 29-Sep-2015.)
Assertion
Ref Expression
lbfzo0  |-  ( 0  e.  ( 0..^ A )  <->  A  e.  NN )

Proof of Theorem lbfzo0
StepHypRef Expression
1 0z 9382 . . 3  |-  0  e.  ZZ
2 3anass 984 . . 3  |-  ( ( 0  e.  ZZ  /\  A  e.  ZZ  /\  0  <  A )  <->  ( 0  e.  ZZ  /\  ( A  e.  ZZ  /\  0  <  A ) ) )
31, 2mpbiran 942 . 2  |-  ( ( 0  e.  ZZ  /\  A  e.  ZZ  /\  0  <  A )  <->  ( A  e.  ZZ  /\  0  < 
A ) )
4 fzolb 10275 . 2  |-  ( 0  e.  ( 0..^ A )  <->  ( 0  e.  ZZ  /\  A  e.  ZZ  /\  0  < 
A ) )
5 elnnz 9381 . 2  |-  ( A  e.  NN  <->  ( A  e.  ZZ  /\  0  < 
A ) )
63, 4, 53bitr4i 212 1  |-  ( 0  e.  ( 0..^ A )  <->  A  e.  NN )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    /\ w3a 980    e. wcel 2175   class class class wbr 4043  (class class class)co 5943   0cc0 7924    < clt 8106   NNcn 9035   ZZcz 9371  ..^cfzo 10263
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-inn 9036  df-n0 9295  df-z 9372  df-uz 9648  df-fz 10130  df-fzo 10264
This theorem is referenced by:  elfzo0  10304  fzo0m  10313  fzo0end  10350  wrdsymb1  11028  ccatfv0  11057  ccat1st1st  11091  lswccats1fst  11094  nnnn0modprm0  12549
  Copyright terms: Public domain W3C validator