ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzo0 Unicode version

Theorem elfzo0 10117
Description: Membership in a half-open integer range based at 0. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 29-Sep-2015.)
Assertion
Ref Expression
elfzo0  |-  ( A  e.  ( 0..^ B )  <->  ( A  e. 
NN0  /\  B  e.  NN  /\  A  <  B
) )

Proof of Theorem elfzo0
StepHypRef Expression
1 elfzouz 10086 . . . 4  |-  ( A  e.  ( 0..^ B )  ->  A  e.  ( ZZ>= `  0 )
)
2 elnn0uz 9503 . . . 4  |-  ( A  e.  NN0  <->  A  e.  ( ZZ>=
`  0 ) )
31, 2sylibr 133 . . 3  |-  ( A  e.  ( 0..^ B )  ->  A  e.  NN0 )
4 elfzolt3b 10094 . . . 4  |-  ( A  e.  ( 0..^ B )  ->  0  e.  ( 0..^ B ) )
5 lbfzo0 10116 . . . 4  |-  ( 0  e.  ( 0..^ B )  <->  B  e.  NN )
64, 5sylib 121 . . 3  |-  ( A  e.  ( 0..^ B )  ->  B  e.  NN )
7 elfzolt2 10091 . . 3  |-  ( A  e.  ( 0..^ B )  ->  A  <  B )
83, 6, 73jca 1167 . 2  |-  ( A  e.  ( 0..^ B )  ->  ( A  e.  NN0  /\  B  e.  NN  /\  A  < 
B ) )
9 simp1 987 . . . 4  |-  ( ( A  e.  NN0  /\  B  e.  NN  /\  A  <  B )  ->  A  e.  NN0 )
109, 2sylib 121 . . 3  |-  ( ( A  e.  NN0  /\  B  e.  NN  /\  A  <  B )  ->  A  e.  ( ZZ>= `  0 )
)
11 nnz 9210 . . . 4  |-  ( B  e.  NN  ->  B  e.  ZZ )
12113ad2ant2 1009 . . 3  |-  ( ( A  e.  NN0  /\  B  e.  NN  /\  A  <  B )  ->  B  e.  ZZ )
13 simp3 989 . . 3  |-  ( ( A  e.  NN0  /\  B  e.  NN  /\  A  <  B )  ->  A  <  B )
14 elfzo2 10085 . . 3  |-  ( A  e.  ( 0..^ B )  <->  ( A  e.  ( ZZ>= `  0 )  /\  B  e.  ZZ  /\  A  <  B ) )
1510, 12, 13, 14syl3anbrc 1171 . 2  |-  ( ( A  e.  NN0  /\  B  e.  NN  /\  A  <  B )  ->  A  e.  ( 0..^ B ) )
168, 15impbii 125 1  |-  ( A  e.  ( 0..^ B )  <->  ( A  e. 
NN0  /\  B  e.  NN  /\  A  <  B
) )
Colors of variables: wff set class
Syntax hints:    <-> wb 104    /\ w3a 968    e. wcel 2136   class class class wbr 3982   ` cfv 5188  (class class class)co 5842   0cc0 7753    < clt 7933   NNcn 8857   NN0cn0 9114   ZZcz 9191   ZZ>=cuz 9466  ..^cfzo 10077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467  df-fz 9945  df-fzo 10078
This theorem is referenced by:  fzo1fzo0n0  10118  elfzo0z  10119  elfzo0le  10120  fzonmapblen  10122  fzofzim  10123  ubmelfzo  10135  elfzodifsumelfzo  10136  elfzonlteqm1  10145  fzonn0p1  10146  fzonn0p1p1  10148  elfzom1p1elfzo  10149  ubmelm1fzo  10161  subfzo0  10177  zmodidfzoimp  10289  modfzo0difsn  10330  modsumfzodifsn  10331  addmodlteq  10333  addmodlteqALT  11797  hashgcdlem  12170
  Copyright terms: Public domain W3C validator