ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmodpropd Unicode version

Theorem lmodpropd 13625
Description: If two structures have the same components (properties), one is a left module iff the other one is. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 27-Jun-2015.)
Hypotheses
Ref Expression
lmodpropd.1  |-  ( ph  ->  B  =  ( Base `  K ) )
lmodpropd.2  |-  ( ph  ->  B  =  ( Base `  L ) )
lmodpropd.3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
lmodpropd.4  |-  ( ph  ->  F  =  (Scalar `  K ) )
lmodpropd.5  |-  ( ph  ->  F  =  (Scalar `  L ) )
lmodpropd.6  |-  P  =  ( Base `  F
)
lmodpropd.7  |-  ( (
ph  /\  ( x  e.  P  /\  y  e.  B ) )  -> 
( x ( .s
`  K ) y )  =  ( x ( .s `  L
) y ) )
Assertion
Ref Expression
lmodpropd  |-  ( ph  ->  ( K  e.  LMod  <->  L  e.  LMod ) )
Distinct variable groups:    x, y, B   
x, K, y    x, L, y    x, P, y    ph, x, y
Allowed substitution hints:    F( x, y)

Proof of Theorem lmodpropd
StepHypRef Expression
1 lmodpropd.1 . 2  |-  ( ph  ->  B  =  ( Base `  K ) )
2 lmodpropd.2 . 2  |-  ( ph  ->  B  =  ( Base `  L ) )
3 eqid 2188 . 2  |-  (Scalar `  K )  =  (Scalar `  K )
4 eqid 2188 . 2  |-  (Scalar `  L )  =  (Scalar `  L )
5 lmodpropd.6 . . 3  |-  P  =  ( Base `  F
)
6 lmodpropd.4 . . . 4  |-  ( ph  ->  F  =  (Scalar `  K ) )
76fveq2d 5533 . . 3  |-  ( ph  ->  ( Base `  F
)  =  ( Base `  (Scalar `  K )
) )
85, 7eqtrid 2233 . 2  |-  ( ph  ->  P  =  ( Base `  (Scalar `  K )
) )
9 lmodpropd.5 . . . 4  |-  ( ph  ->  F  =  (Scalar `  L ) )
109fveq2d 5533 . . 3  |-  ( ph  ->  ( Base `  F
)  =  ( Base `  (Scalar `  L )
) )
115, 10eqtrid 2233 . 2  |-  ( ph  ->  P  =  ( Base `  (Scalar `  L )
) )
12 lmodpropd.3 . 2  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
136, 9eqtr3d 2223 . . . . 5  |-  ( ph  ->  (Scalar `  K )  =  (Scalar `  L )
)
1413adantr 276 . . . 4  |-  ( (
ph  /\  ( x  e.  P  /\  y  e.  P ) )  -> 
(Scalar `  K )  =  (Scalar `  L )
)
1514fveq2d 5533 . . 3  |-  ( (
ph  /\  ( x  e.  P  /\  y  e.  P ) )  -> 
( +g  `  (Scalar `  K ) )  =  ( +g  `  (Scalar `  L ) ) )
1615oveqd 5907 . 2  |-  ( (
ph  /\  ( x  e.  P  /\  y  e.  P ) )  -> 
( x ( +g  `  (Scalar `  K )
) y )  =  ( x ( +g  `  (Scalar `  L )
) y ) )
1714fveq2d 5533 . . 3  |-  ( (
ph  /\  ( x  e.  P  /\  y  e.  P ) )  -> 
( .r `  (Scalar `  K ) )  =  ( .r `  (Scalar `  L ) ) )
1817oveqd 5907 . 2  |-  ( (
ph  /\  ( x  e.  P  /\  y  e.  P ) )  -> 
( x ( .r
`  (Scalar `  K )
) y )  =  ( x ( .r
`  (Scalar `  L )
) y ) )
19 lmodpropd.7 . 2  |-  ( (
ph  /\  ( x  e.  P  /\  y  e.  B ) )  -> 
( x ( .s
`  K ) y )  =  ( x ( .s `  L
) y ) )
201, 2, 3, 4, 8, 11, 12, 16, 18, 19lmodprop2d 13624 1  |-  ( ph  ->  ( K  e.  LMod  <->  L  e.  LMod ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1363    e. wcel 2159   ` cfv 5230  (class class class)co 5890   Basecbs 12479   +g cplusg 12554   .rcmulr 12555  Scalarcsca 12557   .scvsca 12558   LModclmod 13563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2161  ax-14 2162  ax-ext 2170  ax-sep 4135  ax-pow 4188  ax-pr 4223  ax-un 4447  ax-setind 4550  ax-cnex 7919  ax-resscn 7920  ax-1cn 7921  ax-1re 7922  ax-icn 7923  ax-addcl 7924  ax-addrcl 7925  ax-mulcl 7926  ax-addcom 7928  ax-addass 7930  ax-i2m1 7933  ax-0lt1 7934  ax-0id 7936  ax-rnegex 7937  ax-pre-ltirr 7940  ax-pre-ltadd 7944
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2040  df-mo 2041  df-clab 2175  df-cleq 2181  df-clel 2184  df-nfc 2320  df-ne 2360  df-nel 2455  df-ral 2472  df-rex 2473  df-reu 2474  df-rmo 2475  df-rab 2476  df-v 2753  df-sbc 2977  df-csb 3072  df-dif 3145  df-un 3147  df-in 3149  df-ss 3156  df-nul 3437  df-pw 3591  df-sn 3612  df-pr 3613  df-op 3615  df-uni 3824  df-int 3859  df-br 4018  df-opab 4079  df-mpt 4080  df-id 4307  df-xp 4646  df-rel 4647  df-cnv 4648  df-co 4649  df-dm 4650  df-rn 4651  df-res 4652  df-ima 4653  df-iota 5192  df-fun 5232  df-fn 5233  df-fv 5238  df-riota 5846  df-ov 5893  df-oprab 5894  df-mpo 5895  df-pnf 8011  df-mnf 8012  df-ltxr 8014  df-inn 8937  df-2 8995  df-3 8996  df-4 8997  df-5 8998  df-6 8999  df-ndx 12482  df-slot 12483  df-base 12485  df-sets 12486  df-plusg 12567  df-mulr 12568  df-sca 12570  df-vsca 12571  df-0g 12728  df-mgm 12797  df-sgrp 12830  df-mnd 12843  df-grp 12913  df-mgp 13235  df-ur 13274  df-ring 13312  df-lmod 13565
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator