ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmodpropd Unicode version

Theorem lmodpropd 14226
Description: If two structures have the same components (properties), one is a left module iff the other one is. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 27-Jun-2015.)
Hypotheses
Ref Expression
lmodpropd.1  |-  ( ph  ->  B  =  ( Base `  K ) )
lmodpropd.2  |-  ( ph  ->  B  =  ( Base `  L ) )
lmodpropd.3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
lmodpropd.4  |-  ( ph  ->  F  =  (Scalar `  K ) )
lmodpropd.5  |-  ( ph  ->  F  =  (Scalar `  L ) )
lmodpropd.6  |-  P  =  ( Base `  F
)
lmodpropd.7  |-  ( (
ph  /\  ( x  e.  P  /\  y  e.  B ) )  -> 
( x ( .s
`  K ) y )  =  ( x ( .s `  L
) y ) )
Assertion
Ref Expression
lmodpropd  |-  ( ph  ->  ( K  e.  LMod  <->  L  e.  LMod ) )
Distinct variable groups:    x, y, B   
x, K, y    x, L, y    x, P, y    ph, x, y
Allowed substitution hints:    F( x, y)

Proof of Theorem lmodpropd
StepHypRef Expression
1 lmodpropd.1 . 2  |-  ( ph  ->  B  =  ( Base `  K ) )
2 lmodpropd.2 . 2  |-  ( ph  ->  B  =  ( Base `  L ) )
3 eqid 2207 . 2  |-  (Scalar `  K )  =  (Scalar `  K )
4 eqid 2207 . 2  |-  (Scalar `  L )  =  (Scalar `  L )
5 lmodpropd.6 . . 3  |-  P  =  ( Base `  F
)
6 lmodpropd.4 . . . 4  |-  ( ph  ->  F  =  (Scalar `  K ) )
76fveq2d 5603 . . 3  |-  ( ph  ->  ( Base `  F
)  =  ( Base `  (Scalar `  K )
) )
85, 7eqtrid 2252 . 2  |-  ( ph  ->  P  =  ( Base `  (Scalar `  K )
) )
9 lmodpropd.5 . . . 4  |-  ( ph  ->  F  =  (Scalar `  L ) )
109fveq2d 5603 . . 3  |-  ( ph  ->  ( Base `  F
)  =  ( Base `  (Scalar `  L )
) )
115, 10eqtrid 2252 . 2  |-  ( ph  ->  P  =  ( Base `  (Scalar `  L )
) )
12 lmodpropd.3 . 2  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
136, 9eqtr3d 2242 . . . . 5  |-  ( ph  ->  (Scalar `  K )  =  (Scalar `  L )
)
1413adantr 276 . . . 4  |-  ( (
ph  /\  ( x  e.  P  /\  y  e.  P ) )  -> 
(Scalar `  K )  =  (Scalar `  L )
)
1514fveq2d 5603 . . 3  |-  ( (
ph  /\  ( x  e.  P  /\  y  e.  P ) )  -> 
( +g  `  (Scalar `  K ) )  =  ( +g  `  (Scalar `  L ) ) )
1615oveqd 5984 . 2  |-  ( (
ph  /\  ( x  e.  P  /\  y  e.  P ) )  -> 
( x ( +g  `  (Scalar `  K )
) y )  =  ( x ( +g  `  (Scalar `  L )
) y ) )
1714fveq2d 5603 . . 3  |-  ( (
ph  /\  ( x  e.  P  /\  y  e.  P ) )  -> 
( .r `  (Scalar `  K ) )  =  ( .r `  (Scalar `  L ) ) )
1817oveqd 5984 . 2  |-  ( (
ph  /\  ( x  e.  P  /\  y  e.  P ) )  -> 
( x ( .r
`  (Scalar `  K )
) y )  =  ( x ( .r
`  (Scalar `  L )
) y ) )
19 lmodpropd.7 . 2  |-  ( (
ph  /\  ( x  e.  P  /\  y  e.  B ) )  -> 
( x ( .s
`  K ) y )  =  ( x ( .s `  L
) y ) )
201, 2, 3, 4, 8, 11, 12, 16, 18, 19lmodprop2d 14225 1  |-  ( ph  ->  ( K  e.  LMod  <->  L  e.  LMod ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   ` cfv 5290  (class class class)co 5967   Basecbs 12947   +g cplusg 13024   .rcmulr 13025  Scalarcsca 13027   .scvsca 13028   LModclmod 14164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-pre-ltirr 8072  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-ltxr 8147  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-5 9133  df-6 9134  df-ndx 12950  df-slot 12951  df-base 12953  df-sets 12954  df-plusg 13037  df-mulr 13038  df-sca 13040  df-vsca 13041  df-0g 13205  df-mgm 13303  df-sgrp 13349  df-mnd 13364  df-grp 13450  df-mgp 13798  df-ur 13837  df-ring 13875  df-lmod 14166
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator