ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmodpropd Unicode version

Theorem lmodpropd 13848
Description: If two structures have the same components (properties), one is a left module iff the other one is. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 27-Jun-2015.)
Hypotheses
Ref Expression
lmodpropd.1  |-  ( ph  ->  B  =  ( Base `  K ) )
lmodpropd.2  |-  ( ph  ->  B  =  ( Base `  L ) )
lmodpropd.3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
lmodpropd.4  |-  ( ph  ->  F  =  (Scalar `  K ) )
lmodpropd.5  |-  ( ph  ->  F  =  (Scalar `  L ) )
lmodpropd.6  |-  P  =  ( Base `  F
)
lmodpropd.7  |-  ( (
ph  /\  ( x  e.  P  /\  y  e.  B ) )  -> 
( x ( .s
`  K ) y )  =  ( x ( .s `  L
) y ) )
Assertion
Ref Expression
lmodpropd  |-  ( ph  ->  ( K  e.  LMod  <->  L  e.  LMod ) )
Distinct variable groups:    x, y, B   
x, K, y    x, L, y    x, P, y    ph, x, y
Allowed substitution hints:    F( x, y)

Proof of Theorem lmodpropd
StepHypRef Expression
1 lmodpropd.1 . 2  |-  ( ph  ->  B  =  ( Base `  K ) )
2 lmodpropd.2 . 2  |-  ( ph  ->  B  =  ( Base `  L ) )
3 eqid 2193 . 2  |-  (Scalar `  K )  =  (Scalar `  K )
4 eqid 2193 . 2  |-  (Scalar `  L )  =  (Scalar `  L )
5 lmodpropd.6 . . 3  |-  P  =  ( Base `  F
)
6 lmodpropd.4 . . . 4  |-  ( ph  ->  F  =  (Scalar `  K ) )
76fveq2d 5559 . . 3  |-  ( ph  ->  ( Base `  F
)  =  ( Base `  (Scalar `  K )
) )
85, 7eqtrid 2238 . 2  |-  ( ph  ->  P  =  ( Base `  (Scalar `  K )
) )
9 lmodpropd.5 . . . 4  |-  ( ph  ->  F  =  (Scalar `  L ) )
109fveq2d 5559 . . 3  |-  ( ph  ->  ( Base `  F
)  =  ( Base `  (Scalar `  L )
) )
115, 10eqtrid 2238 . 2  |-  ( ph  ->  P  =  ( Base `  (Scalar `  L )
) )
12 lmodpropd.3 . 2  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
136, 9eqtr3d 2228 . . . . 5  |-  ( ph  ->  (Scalar `  K )  =  (Scalar `  L )
)
1413adantr 276 . . . 4  |-  ( (
ph  /\  ( x  e.  P  /\  y  e.  P ) )  -> 
(Scalar `  K )  =  (Scalar `  L )
)
1514fveq2d 5559 . . 3  |-  ( (
ph  /\  ( x  e.  P  /\  y  e.  P ) )  -> 
( +g  `  (Scalar `  K ) )  =  ( +g  `  (Scalar `  L ) ) )
1615oveqd 5936 . 2  |-  ( (
ph  /\  ( x  e.  P  /\  y  e.  P ) )  -> 
( x ( +g  `  (Scalar `  K )
) y )  =  ( x ( +g  `  (Scalar `  L )
) y ) )
1714fveq2d 5559 . . 3  |-  ( (
ph  /\  ( x  e.  P  /\  y  e.  P ) )  -> 
( .r `  (Scalar `  K ) )  =  ( .r `  (Scalar `  L ) ) )
1817oveqd 5936 . 2  |-  ( (
ph  /\  ( x  e.  P  /\  y  e.  P ) )  -> 
( x ( .r
`  (Scalar `  K )
) y )  =  ( x ( .r
`  (Scalar `  L )
) y ) )
19 lmodpropd.7 . 2  |-  ( (
ph  /\  ( x  e.  P  /\  y  e.  B ) )  -> 
( x ( .s
`  K ) y )  =  ( x ( .s `  L
) y ) )
201, 2, 3, 4, 8, 11, 12, 16, 18, 19lmodprop2d 13847 1  |-  ( ph  ->  ( K  e.  LMod  <->  L  e.  LMod ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   ` cfv 5255  (class class class)co 5919   Basecbs 12621   +g cplusg 12698   .rcmulr 12699  Scalarcsca 12701   .scvsca 12702   LModclmod 13786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-5 9046  df-6 9047  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-plusg 12711  df-mulr 12712  df-sca 12714  df-vsca 12715  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-grp 13078  df-mgp 13420  df-ur 13459  df-ring 13497  df-lmod 13788
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator