ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmodpropd Unicode version

Theorem lmodpropd 14053
Description: If two structures have the same components (properties), one is a left module iff the other one is. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 27-Jun-2015.)
Hypotheses
Ref Expression
lmodpropd.1  |-  ( ph  ->  B  =  ( Base `  K ) )
lmodpropd.2  |-  ( ph  ->  B  =  ( Base `  L ) )
lmodpropd.3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
lmodpropd.4  |-  ( ph  ->  F  =  (Scalar `  K ) )
lmodpropd.5  |-  ( ph  ->  F  =  (Scalar `  L ) )
lmodpropd.6  |-  P  =  ( Base `  F
)
lmodpropd.7  |-  ( (
ph  /\  ( x  e.  P  /\  y  e.  B ) )  -> 
( x ( .s
`  K ) y )  =  ( x ( .s `  L
) y ) )
Assertion
Ref Expression
lmodpropd  |-  ( ph  ->  ( K  e.  LMod  <->  L  e.  LMod ) )
Distinct variable groups:    x, y, B   
x, K, y    x, L, y    x, P, y    ph, x, y
Allowed substitution hints:    F( x, y)

Proof of Theorem lmodpropd
StepHypRef Expression
1 lmodpropd.1 . 2  |-  ( ph  ->  B  =  ( Base `  K ) )
2 lmodpropd.2 . 2  |-  ( ph  ->  B  =  ( Base `  L ) )
3 eqid 2204 . 2  |-  (Scalar `  K )  =  (Scalar `  K )
4 eqid 2204 . 2  |-  (Scalar `  L )  =  (Scalar `  L )
5 lmodpropd.6 . . 3  |-  P  =  ( Base `  F
)
6 lmodpropd.4 . . . 4  |-  ( ph  ->  F  =  (Scalar `  K ) )
76fveq2d 5579 . . 3  |-  ( ph  ->  ( Base `  F
)  =  ( Base `  (Scalar `  K )
) )
85, 7eqtrid 2249 . 2  |-  ( ph  ->  P  =  ( Base `  (Scalar `  K )
) )
9 lmodpropd.5 . . . 4  |-  ( ph  ->  F  =  (Scalar `  L ) )
109fveq2d 5579 . . 3  |-  ( ph  ->  ( Base `  F
)  =  ( Base `  (Scalar `  L )
) )
115, 10eqtrid 2249 . 2  |-  ( ph  ->  P  =  ( Base `  (Scalar `  L )
) )
12 lmodpropd.3 . 2  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
136, 9eqtr3d 2239 . . . . 5  |-  ( ph  ->  (Scalar `  K )  =  (Scalar `  L )
)
1413adantr 276 . . . 4  |-  ( (
ph  /\  ( x  e.  P  /\  y  e.  P ) )  -> 
(Scalar `  K )  =  (Scalar `  L )
)
1514fveq2d 5579 . . 3  |-  ( (
ph  /\  ( x  e.  P  /\  y  e.  P ) )  -> 
( +g  `  (Scalar `  K ) )  =  ( +g  `  (Scalar `  L ) ) )
1615oveqd 5960 . 2  |-  ( (
ph  /\  ( x  e.  P  /\  y  e.  P ) )  -> 
( x ( +g  `  (Scalar `  K )
) y )  =  ( x ( +g  `  (Scalar `  L )
) y ) )
1714fveq2d 5579 . . 3  |-  ( (
ph  /\  ( x  e.  P  /\  y  e.  P ) )  -> 
( .r `  (Scalar `  K ) )  =  ( .r `  (Scalar `  L ) ) )
1817oveqd 5960 . 2  |-  ( (
ph  /\  ( x  e.  P  /\  y  e.  P ) )  -> 
( x ( .r
`  (Scalar `  K )
) y )  =  ( x ( .r
`  (Scalar `  L )
) y ) )
19 lmodpropd.7 . 2  |-  ( (
ph  /\  ( x  e.  P  /\  y  e.  B ) )  -> 
( x ( .s
`  K ) y )  =  ( x ( .s `  L
) y ) )
201, 2, 3, 4, 8, 11, 12, 16, 18, 19lmodprop2d 14052 1  |-  ( ph  ->  ( K  e.  LMod  <->  L  e.  LMod ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1372    e. wcel 2175   ` cfv 5270  (class class class)co 5943   Basecbs 12774   +g cplusg 12851   .rcmulr 12852  Scalarcsca 12854   .scvsca 12855   LModclmod 13991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-pre-ltirr 8036  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-pnf 8108  df-mnf 8109  df-ltxr 8111  df-inn 9036  df-2 9094  df-3 9095  df-4 9096  df-5 9097  df-6 9098  df-ndx 12777  df-slot 12778  df-base 12780  df-sets 12781  df-plusg 12864  df-mulr 12865  df-sca 12867  df-vsca 12868  df-0g 13032  df-mgm 13130  df-sgrp 13176  df-mnd 13191  df-grp 13277  df-mgp 13625  df-ur 13664  df-ring 13702  df-lmod 13993
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator