![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lmodpropd | GIF version |
Description: If two structures have the same components (properties), one is a left module iff the other one is. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 27-Jun-2015.) |
Ref | Expression |
---|---|
lmodpropd.1 | β’ (π β π΅ = (BaseβπΎ)) |
lmodpropd.2 | β’ (π β π΅ = (BaseβπΏ)) |
lmodpropd.3 | β’ ((π β§ (π₯ β π΅ β§ π¦ β π΅)) β (π₯(+gβπΎ)π¦) = (π₯(+gβπΏ)π¦)) |
lmodpropd.4 | β’ (π β πΉ = (ScalarβπΎ)) |
lmodpropd.5 | β’ (π β πΉ = (ScalarβπΏ)) |
lmodpropd.6 | β’ π = (BaseβπΉ) |
lmodpropd.7 | β’ ((π β§ (π₯ β π β§ π¦ β π΅)) β (π₯( Β·π βπΎ)π¦) = (π₯( Β·π βπΏ)π¦)) |
Ref | Expression |
---|---|
lmodpropd | β’ (π β (πΎ β LMod β πΏ β LMod)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodpropd.1 | . 2 β’ (π β π΅ = (BaseβπΎ)) | |
2 | lmodpropd.2 | . 2 β’ (π β π΅ = (BaseβπΏ)) | |
3 | eqid 2177 | . 2 β’ (ScalarβπΎ) = (ScalarβπΎ) | |
4 | eqid 2177 | . 2 β’ (ScalarβπΏ) = (ScalarβπΏ) | |
5 | lmodpropd.6 | . . 3 β’ π = (BaseβπΉ) | |
6 | lmodpropd.4 | . . . 4 β’ (π β πΉ = (ScalarβπΎ)) | |
7 | 6 | fveq2d 5521 | . . 3 β’ (π β (BaseβπΉ) = (Baseβ(ScalarβπΎ))) |
8 | 5, 7 | eqtrid 2222 | . 2 β’ (π β π = (Baseβ(ScalarβπΎ))) |
9 | lmodpropd.5 | . . . 4 β’ (π β πΉ = (ScalarβπΏ)) | |
10 | 9 | fveq2d 5521 | . . 3 β’ (π β (BaseβπΉ) = (Baseβ(ScalarβπΏ))) |
11 | 5, 10 | eqtrid 2222 | . 2 β’ (π β π = (Baseβ(ScalarβπΏ))) |
12 | lmodpropd.3 | . 2 β’ ((π β§ (π₯ β π΅ β§ π¦ β π΅)) β (π₯(+gβπΎ)π¦) = (π₯(+gβπΏ)π¦)) | |
13 | 6, 9 | eqtr3d 2212 | . . . . 5 β’ (π β (ScalarβπΎ) = (ScalarβπΏ)) |
14 | 13 | adantr 276 | . . . 4 β’ ((π β§ (π₯ β π β§ π¦ β π)) β (ScalarβπΎ) = (ScalarβπΏ)) |
15 | 14 | fveq2d 5521 | . . 3 β’ ((π β§ (π₯ β π β§ π¦ β π)) β (+gβ(ScalarβπΎ)) = (+gβ(ScalarβπΏ))) |
16 | 15 | oveqd 5894 | . 2 β’ ((π β§ (π₯ β π β§ π¦ β π)) β (π₯(+gβ(ScalarβπΎ))π¦) = (π₯(+gβ(ScalarβπΏ))π¦)) |
17 | 14 | fveq2d 5521 | . . 3 β’ ((π β§ (π₯ β π β§ π¦ β π)) β (.rβ(ScalarβπΎ)) = (.rβ(ScalarβπΏ))) |
18 | 17 | oveqd 5894 | . 2 β’ ((π β§ (π₯ β π β§ π¦ β π)) β (π₯(.rβ(ScalarβπΎ))π¦) = (π₯(.rβ(ScalarβπΏ))π¦)) |
19 | lmodpropd.7 | . 2 β’ ((π β§ (π₯ β π β§ π¦ β π΅)) β (π₯( Β·π βπΎ)π¦) = (π₯( Β·π βπΏ)π¦)) | |
20 | 1, 2, 3, 4, 8, 11, 12, 16, 18, 19 | lmodprop2d 13443 | 1 β’ (π β (πΎ β LMod β πΏ β LMod)) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β§ wa 104 β wb 105 = wceq 1353 β wcel 2148 βcfv 5218 (class class class)co 5877 Basecbs 12464 +gcplusg 12538 .rcmulr 12539 Scalarcsca 12541 Β·π cvsca 12542 LModclmod 13382 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-addcom 7913 ax-addass 7915 ax-i2m1 7918 ax-0lt1 7919 ax-0id 7921 ax-rnegex 7922 ax-pre-ltirr 7925 ax-pre-ltadd 7929 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-fv 5226 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-pnf 7996 df-mnf 7997 df-ltxr 7999 df-inn 8922 df-2 8980 df-3 8981 df-4 8982 df-5 8983 df-6 8984 df-ndx 12467 df-slot 12468 df-base 12470 df-sets 12471 df-plusg 12551 df-mulr 12552 df-sca 12554 df-vsca 12555 df-0g 12712 df-mgm 12780 df-sgrp 12813 df-mnd 12823 df-grp 12885 df-mgp 13136 df-ur 13148 df-ring 13186 df-lmod 13384 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |