ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmodpropd GIF version

Theorem lmodpropd 14155
Description: If two structures have the same components (properties), one is a left module iff the other one is. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 27-Jun-2015.)
Hypotheses
Ref Expression
lmodpropd.1 (𝜑𝐵 = (Base‘𝐾))
lmodpropd.2 (𝜑𝐵 = (Base‘𝐿))
lmodpropd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
lmodpropd.4 (𝜑𝐹 = (Scalar‘𝐾))
lmodpropd.5 (𝜑𝐹 = (Scalar‘𝐿))
lmodpropd.6 𝑃 = (Base‘𝐹)
lmodpropd.7 ((𝜑 ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐾)𝑦) = (𝑥( ·𝑠𝐿)𝑦))
Assertion
Ref Expression
lmodpropd (𝜑 → (𝐾 ∈ LMod ↔ 𝐿 ∈ LMod))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝑥,𝑃,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem lmodpropd
StepHypRef Expression
1 lmodpropd.1 . 2 (𝜑𝐵 = (Base‘𝐾))
2 lmodpropd.2 . 2 (𝜑𝐵 = (Base‘𝐿))
3 eqid 2206 . 2 (Scalar‘𝐾) = (Scalar‘𝐾)
4 eqid 2206 . 2 (Scalar‘𝐿) = (Scalar‘𝐿)
5 lmodpropd.6 . . 3 𝑃 = (Base‘𝐹)
6 lmodpropd.4 . . . 4 (𝜑𝐹 = (Scalar‘𝐾))
76fveq2d 5587 . . 3 (𝜑 → (Base‘𝐹) = (Base‘(Scalar‘𝐾)))
85, 7eqtrid 2251 . 2 (𝜑𝑃 = (Base‘(Scalar‘𝐾)))
9 lmodpropd.5 . . . 4 (𝜑𝐹 = (Scalar‘𝐿))
109fveq2d 5587 . . 3 (𝜑 → (Base‘𝐹) = (Base‘(Scalar‘𝐿)))
115, 10eqtrid 2251 . 2 (𝜑𝑃 = (Base‘(Scalar‘𝐿)))
12 lmodpropd.3 . 2 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
136, 9eqtr3d 2241 . . . . 5 (𝜑 → (Scalar‘𝐾) = (Scalar‘𝐿))
1413adantr 276 . . . 4 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (Scalar‘𝐾) = (Scalar‘𝐿))
1514fveq2d 5587 . . 3 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (+g‘(Scalar‘𝐾)) = (+g‘(Scalar‘𝐿)))
1615oveqd 5968 . 2 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (𝑥(+g‘(Scalar‘𝐾))𝑦) = (𝑥(+g‘(Scalar‘𝐿))𝑦))
1714fveq2d 5587 . . 3 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (.r‘(Scalar‘𝐾)) = (.r‘(Scalar‘𝐿)))
1817oveqd 5968 . 2 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (𝑥(.r‘(Scalar‘𝐾))𝑦) = (𝑥(.r‘(Scalar‘𝐿))𝑦))
19 lmodpropd.7 . 2 ((𝜑 ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐾)𝑦) = (𝑥( ·𝑠𝐿)𝑦))
201, 2, 3, 4, 8, 11, 12, 16, 18, 19lmodprop2d 14154 1 (𝜑 → (𝐾 ∈ LMod ↔ 𝐿 ∈ LMod))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177  cfv 5276  (class class class)co 5951  Basecbs 12876  +gcplusg 12953  .rcmulr 12954  Scalarcsca 12956   ·𝑠 cvsca 12957  LModclmod 14093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-addcom 8032  ax-addass 8034  ax-i2m1 8037  ax-0lt1 8038  ax-0id 8040  ax-rnegex 8041  ax-pre-ltirr 8044  ax-pre-ltadd 8048
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-pnf 8116  df-mnf 8117  df-ltxr 8119  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-5 9105  df-6 9106  df-ndx 12879  df-slot 12880  df-base 12882  df-sets 12883  df-plusg 12966  df-mulr 12967  df-sca 12969  df-vsca 12970  df-0g 13134  df-mgm 13232  df-sgrp 13278  df-mnd 13293  df-grp 13379  df-mgp 13727  df-ur 13766  df-ring 13804  df-lmod 14095
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator