ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexprlemelu Unicode version

Theorem ltexprlemelu 7502
Description: Element in upper cut of the constructed difference. Lemma for ltexpri 7516. (Contributed by Jim Kingdon, 21-Dec-2019.)
Hypothesis
Ref Expression
ltexprlem.1  |-  C  = 
<. { x  e.  Q.  |  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.
Assertion
Ref Expression
ltexprlemelu  |-  ( r  e.  ( 2nd `  C
)  <->  ( r  e. 
Q.  /\  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )
Distinct variable groups:    x, y, r, A    x, B, y, r    x, C, y, r

Proof of Theorem ltexprlemelu
StepHypRef Expression
1 oveq2 5826 . . . . 5  |-  ( x  =  r  ->  (
y  +Q  x )  =  ( y  +Q  r ) )
21eleq1d 2226 . . . 4  |-  ( x  =  r  ->  (
( y  +Q  x
)  e.  ( 2nd `  B )  <->  ( y  +Q  r )  e.  ( 2nd `  B ) ) )
32anbi2d 460 . . 3  |-  ( x  =  r  ->  (
( y  e.  ( 1st `  A )  /\  ( y  +Q  x )  e.  ( 2nd `  B ) )  <->  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )
43exbidv 1805 . 2  |-  ( x  =  r  ->  ( E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) )  <->  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )
5 ltexprlem.1 . . . 4  |-  C  = 
<. { x  e.  Q.  |  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.
65fveq2i 5468 . . 3  |-  ( 2nd `  C )  =  ( 2nd `  <. { x  e.  Q.  |  E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >. )
7 nqex 7266 . . . . 5  |-  Q.  e.  _V
87rabex 4108 . . . 4  |-  { x  e.  Q.  |  E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) }  e.  _V
97rabex 4108 . . . 4  |-  { x  e.  Q.  |  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) }  e.  _V
108, 9op2nd 6089 . . 3  |-  ( 2nd `  <. { x  e. 
Q.  |  E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >. )  =  { x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) }
116, 10eqtri 2178 . 2  |-  ( 2nd `  C )  =  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) }
124, 11elrab2 2871 1  |-  ( r  e.  ( 2nd `  C
)  <->  ( r  e. 
Q.  /\  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1335   E.wex 1472    e. wcel 2128   {crab 2439   <.cop 3563   ` cfv 5167  (class class class)co 5818   1stc1st 6080   2ndc2nd 6081   Q.cnq 7183    +Q cplq 7185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-iinf 4545
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-id 4252  df-iom 4548  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-res 4595  df-ima 4596  df-iota 5132  df-fun 5169  df-fn 5170  df-f 5171  df-f1 5172  df-fo 5173  df-f1o 5174  df-fv 5175  df-ov 5821  df-2nd 6083  df-qs 6479  df-ni 7207  df-nqqs 7251
This theorem is referenced by:  ltexprlemm  7503  ltexprlemopu  7506  ltexprlemupu  7507  ltexprlemdisj  7509  ltexprlemloc  7510  ltexprlemfu  7514  ltexprlemru  7515
  Copyright terms: Public domain W3C validator