ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexprlemelu Unicode version

Theorem ltexprlemelu 7158
Description: Element in upper cut of the constructed difference. Lemma for ltexpri 7172. (Contributed by Jim Kingdon, 21-Dec-2019.)
Hypothesis
Ref Expression
ltexprlem.1  |-  C  = 
<. { x  e.  Q.  |  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.
Assertion
Ref Expression
ltexprlemelu  |-  ( r  e.  ( 2nd `  C
)  <->  ( r  e. 
Q.  /\  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )
Distinct variable groups:    x, y, r, A    x, B, y, r    x, C, y, r

Proof of Theorem ltexprlemelu
StepHypRef Expression
1 oveq2 5660 . . . . 5  |-  ( x  =  r  ->  (
y  +Q  x )  =  ( y  +Q  r ) )
21eleq1d 2156 . . . 4  |-  ( x  =  r  ->  (
( y  +Q  x
)  e.  ( 2nd `  B )  <->  ( y  +Q  r )  e.  ( 2nd `  B ) ) )
32anbi2d 452 . . 3  |-  ( x  =  r  ->  (
( y  e.  ( 1st `  A )  /\  ( y  +Q  x )  e.  ( 2nd `  B ) )  <->  ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )
43exbidv 1753 . 2  |-  ( x  =  r  ->  ( E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) )  <->  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )
5 ltexprlem.1 . . . 4  |-  C  = 
<. { x  e.  Q.  |  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.
65fveq2i 5308 . . 3  |-  ( 2nd `  C )  =  ( 2nd `  <. { x  e.  Q.  |  E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >. )
7 nqex 6922 . . . . 5  |-  Q.  e.  _V
87rabex 3983 . . . 4  |-  { x  e.  Q.  |  E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) }  e.  _V
97rabex 3983 . . . 4  |-  { x  e.  Q.  |  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) }  e.  _V
108, 9op2nd 5918 . . 3  |-  ( 2nd `  <. { x  e. 
Q.  |  E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >. )  =  { x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) }
116, 10eqtri 2108 . 2  |-  ( 2nd `  C )  =  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) }
124, 11elrab2 2774 1  |-  ( r  e.  ( 2nd `  C
)  <->  ( r  e. 
Q.  /\  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 102    <-> wb 103    = wceq 1289   E.wex 1426    e. wcel 1438   {crab 2363   <.cop 3449   ` cfv 5015  (class class class)co 5652   1stc1st 5909   2ndc2nd 5910   Q.cnq 6839    +Q cplq 6841
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3954  ax-sep 3957  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-iinf 4403
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2841  df-csb 2934  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-int 3689  df-iun 3732  df-br 3846  df-opab 3900  df-mpt 3901  df-id 4120  df-iom 4406  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-f1 5020  df-fo 5021  df-f1o 5022  df-fv 5023  df-ov 5655  df-2nd 5912  df-qs 6298  df-ni 6863  df-nqqs 6907
This theorem is referenced by:  ltexprlemm  7159  ltexprlemopu  7162  ltexprlemupu  7163  ltexprlemdisj  7165  ltexprlemloc  7166  ltexprlemfu  7170  ltexprlemru  7171
  Copyright terms: Public domain W3C validator