![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ltexprlemelu | GIF version |
Description: Element in upper cut of the constructed difference. Lemma for ltexpri 7615. (Contributed by Jim Kingdon, 21-Dec-2019.) |
Ref | Expression |
---|---|
ltexprlem.1 | ⊢ 𝐶 = ⟨{𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st ‘𝐵))}, {𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd ‘𝐵))}⟩ |
Ref | Expression |
---|---|
ltexprlemelu | ⊢ (𝑟 ∈ (2nd ‘𝐶) ↔ (𝑟 ∈ Q ∧ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd ‘𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 5886 | . . . . 5 ⊢ (𝑥 = 𝑟 → (𝑦 +Q 𝑥) = (𝑦 +Q 𝑟)) | |
2 | 1 | eleq1d 2246 | . . . 4 ⊢ (𝑥 = 𝑟 → ((𝑦 +Q 𝑥) ∈ (2nd ‘𝐵) ↔ (𝑦 +Q 𝑟) ∈ (2nd ‘𝐵))) |
3 | 2 | anbi2d 464 | . . 3 ⊢ (𝑥 = 𝑟 → ((𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd ‘𝐵)) ↔ (𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd ‘𝐵)))) |
4 | 3 | exbidv 1825 | . 2 ⊢ (𝑥 = 𝑟 → (∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd ‘𝐵)) ↔ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd ‘𝐵)))) |
5 | ltexprlem.1 | . . . 4 ⊢ 𝐶 = ⟨{𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st ‘𝐵))}, {𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd ‘𝐵))}⟩ | |
6 | 5 | fveq2i 5520 | . . 3 ⊢ (2nd ‘𝐶) = (2nd ‘⟨{𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st ‘𝐵))}, {𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd ‘𝐵))}⟩) |
7 | nqex 7365 | . . . . 5 ⊢ Q ∈ V | |
8 | 7 | rabex 4149 | . . . 4 ⊢ {𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st ‘𝐵))} ∈ V |
9 | 7 | rabex 4149 | . . . 4 ⊢ {𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd ‘𝐵))} ∈ V |
10 | 8, 9 | op2nd 6151 | . . 3 ⊢ (2nd ‘⟨{𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st ‘𝐵))}, {𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd ‘𝐵))}⟩) = {𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd ‘𝐵))} |
11 | 6, 10 | eqtri 2198 | . 2 ⊢ (2nd ‘𝐶) = {𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd ‘𝐵))} |
12 | 4, 11 | elrab2 2898 | 1 ⊢ (𝑟 ∈ (2nd ‘𝐶) ↔ (𝑟 ∈ Q ∧ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd ‘𝐵)))) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1353 ∃wex 1492 ∈ wcel 2148 {crab 2459 ⟨cop 3597 ‘cfv 5218 (class class class)co 5878 1st c1st 6142 2nd c2nd 6143 Qcnq 7282 +Q cplq 7284 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-iinf 4589 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-ov 5881 df-2nd 6145 df-qs 6544 df-ni 7306 df-nqqs 7350 |
This theorem is referenced by: ltexprlemm 7602 ltexprlemopu 7605 ltexprlemupu 7606 ltexprlemdisj 7608 ltexprlemloc 7609 ltexprlemfu 7613 ltexprlemru 7614 |
Copyright terms: Public domain | W3C validator |