![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ltexprlemelu | GIF version |
Description: Element in upper cut of the constructed difference. Lemma for ltexpri 7172. (Contributed by Jim Kingdon, 21-Dec-2019.) |
Ref | Expression |
---|---|
ltexprlem.1 | ⊢ 𝐶 = 〈{𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st ‘𝐵))}, {𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd ‘𝐵))}〉 |
Ref | Expression |
---|---|
ltexprlemelu | ⊢ (𝑟 ∈ (2nd ‘𝐶) ↔ (𝑟 ∈ Q ∧ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd ‘𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 5660 | . . . . 5 ⊢ (𝑥 = 𝑟 → (𝑦 +Q 𝑥) = (𝑦 +Q 𝑟)) | |
2 | 1 | eleq1d 2156 | . . . 4 ⊢ (𝑥 = 𝑟 → ((𝑦 +Q 𝑥) ∈ (2nd ‘𝐵) ↔ (𝑦 +Q 𝑟) ∈ (2nd ‘𝐵))) |
3 | 2 | anbi2d 452 | . . 3 ⊢ (𝑥 = 𝑟 → ((𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd ‘𝐵)) ↔ (𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd ‘𝐵)))) |
4 | 3 | exbidv 1753 | . 2 ⊢ (𝑥 = 𝑟 → (∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd ‘𝐵)) ↔ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd ‘𝐵)))) |
5 | ltexprlem.1 | . . . 4 ⊢ 𝐶 = 〈{𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st ‘𝐵))}, {𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd ‘𝐵))}〉 | |
6 | 5 | fveq2i 5308 | . . 3 ⊢ (2nd ‘𝐶) = (2nd ‘〈{𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st ‘𝐵))}, {𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd ‘𝐵))}〉) |
7 | nqex 6922 | . . . . 5 ⊢ Q ∈ V | |
8 | 7 | rabex 3983 | . . . 4 ⊢ {𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st ‘𝐵))} ∈ V |
9 | 7 | rabex 3983 | . . . 4 ⊢ {𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd ‘𝐵))} ∈ V |
10 | 8, 9 | op2nd 5918 | . . 3 ⊢ (2nd ‘〈{𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st ‘𝐵))}, {𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd ‘𝐵))}〉) = {𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd ‘𝐵))} |
11 | 6, 10 | eqtri 2108 | . 2 ⊢ (2nd ‘𝐶) = {𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd ‘𝐵))} |
12 | 4, 11 | elrab2 2774 | 1 ⊢ (𝑟 ∈ (2nd ‘𝐶) ↔ (𝑟 ∈ Q ∧ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd ‘𝐵)))) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 102 ↔ wb 103 = wceq 1289 ∃wex 1426 ∈ wcel 1438 {crab 2363 〈cop 3449 ‘cfv 5015 (class class class)co 5652 1st c1st 5909 2nd c2nd 5910 Qcnq 6839 +Q cplq 6841 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 579 ax-in2 580 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-13 1449 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-coll 3954 ax-sep 3957 ax-pow 4009 ax-pr 4036 ax-un 4260 ax-iinf 4403 |
This theorem depends on definitions: df-bi 115 df-3an 926 df-tru 1292 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ral 2364 df-rex 2365 df-reu 2366 df-rab 2368 df-v 2621 df-sbc 2841 df-csb 2934 df-dif 3001 df-un 3003 df-in 3005 df-ss 3012 df-pw 3431 df-sn 3452 df-pr 3453 df-op 3455 df-uni 3654 df-int 3689 df-iun 3732 df-br 3846 df-opab 3900 df-mpt 3901 df-id 4120 df-iom 4406 df-xp 4444 df-rel 4445 df-cnv 4446 df-co 4447 df-dm 4448 df-rn 4449 df-res 4450 df-ima 4451 df-iota 4980 df-fun 5017 df-fn 5018 df-f 5019 df-f1 5020 df-fo 5021 df-f1o 5022 df-fv 5023 df-ov 5655 df-2nd 5912 df-qs 6298 df-ni 6863 df-nqqs 6907 |
This theorem is referenced by: ltexprlemm 7159 ltexprlemopu 7162 ltexprlemupu 7163 ltexprlemdisj 7165 ltexprlemloc 7166 ltexprlemfu 7170 ltexprlemru 7171 |
Copyright terms: Public domain | W3C validator |