| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltexprlemelu | GIF version | ||
| Description: Element in upper cut of the constructed difference. Lemma for ltexpri 7796. (Contributed by Jim Kingdon, 21-Dec-2019.) |
| Ref | Expression |
|---|---|
| ltexprlem.1 | ⊢ 𝐶 = 〈{𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st ‘𝐵))}, {𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd ‘𝐵))}〉 |
| Ref | Expression |
|---|---|
| ltexprlemelu | ⊢ (𝑟 ∈ (2nd ‘𝐶) ↔ (𝑟 ∈ Q ∧ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd ‘𝐵)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 6008 | . . . . 5 ⊢ (𝑥 = 𝑟 → (𝑦 +Q 𝑥) = (𝑦 +Q 𝑟)) | |
| 2 | 1 | eleq1d 2298 | . . . 4 ⊢ (𝑥 = 𝑟 → ((𝑦 +Q 𝑥) ∈ (2nd ‘𝐵) ↔ (𝑦 +Q 𝑟) ∈ (2nd ‘𝐵))) |
| 3 | 2 | anbi2d 464 | . . 3 ⊢ (𝑥 = 𝑟 → ((𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd ‘𝐵)) ↔ (𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd ‘𝐵)))) |
| 4 | 3 | exbidv 1871 | . 2 ⊢ (𝑥 = 𝑟 → (∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd ‘𝐵)) ↔ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd ‘𝐵)))) |
| 5 | ltexprlem.1 | . . . 4 ⊢ 𝐶 = 〈{𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st ‘𝐵))}, {𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd ‘𝐵))}〉 | |
| 6 | 5 | fveq2i 5629 | . . 3 ⊢ (2nd ‘𝐶) = (2nd ‘〈{𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st ‘𝐵))}, {𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd ‘𝐵))}〉) |
| 7 | nqex 7546 | . . . . 5 ⊢ Q ∈ V | |
| 8 | 7 | rabex 4227 | . . . 4 ⊢ {𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st ‘𝐵))} ∈ V |
| 9 | 7 | rabex 4227 | . . . 4 ⊢ {𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd ‘𝐵))} ∈ V |
| 10 | 8, 9 | op2nd 6291 | . . 3 ⊢ (2nd ‘〈{𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st ‘𝐵))}, {𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd ‘𝐵))}〉) = {𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd ‘𝐵))} |
| 11 | 6, 10 | eqtri 2250 | . 2 ⊢ (2nd ‘𝐶) = {𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd ‘𝐵))} |
| 12 | 4, 11 | elrab2 2962 | 1 ⊢ (𝑟 ∈ (2nd ‘𝐶) ↔ (𝑟 ∈ Q ∧ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd ‘𝐵)))) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1395 ∃wex 1538 ∈ wcel 2200 {crab 2512 〈cop 3669 ‘cfv 5317 (class class class)co 6000 1st c1st 6282 2nd c2nd 6283 Qcnq 7463 +Q cplq 7465 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-iinf 4679 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-ov 6003 df-2nd 6285 df-qs 6684 df-ni 7487 df-nqqs 7531 |
| This theorem is referenced by: ltexprlemm 7783 ltexprlemopu 7786 ltexprlemupu 7787 ltexprlemdisj 7789 ltexprlemloc 7790 ltexprlemfu 7794 ltexprlemru 7795 |
| Copyright terms: Public domain | W3C validator |