ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexprlemell Unicode version

Theorem ltexprlemell 7658
Description: Element in lower cut of the constructed difference. Lemma for ltexpri 7673. (Contributed by Jim Kingdon, 21-Dec-2019.)
Hypothesis
Ref Expression
ltexprlem.1  |-  C  = 
<. { x  e.  Q.  |  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.
Assertion
Ref Expression
ltexprlemell  |-  ( q  e.  ( 1st `  C
)  <->  ( q  e. 
Q.  /\  E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )
Distinct variable groups:    x, y, q, A    x, B, y, q    x, C, y, q

Proof of Theorem ltexprlemell
StepHypRef Expression
1 oveq2 5926 . . . . 5  |-  ( x  =  q  ->  (
y  +Q  x )  =  ( y  +Q  q ) )
21eleq1d 2262 . . . 4  |-  ( x  =  q  ->  (
( y  +Q  x
)  e.  ( 1st `  B )  <->  ( y  +Q  q )  e.  ( 1st `  B ) ) )
32anbi2d 464 . . 3  |-  ( x  =  q  ->  (
( y  e.  ( 2nd `  A )  /\  ( y  +Q  x )  e.  ( 1st `  B ) )  <->  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )
43exbidv 1836 . 2  |-  ( x  =  q  ->  ( E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  x )  e.  ( 1st `  B ) )  <->  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )
5 ltexprlem.1 . . . 4  |-  C  = 
<. { x  e.  Q.  |  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.
65fveq2i 5557 . . 3  |-  ( 1st `  C )  =  ( 1st `  <. { x  e.  Q.  |  E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >. )
7 nqex 7423 . . . . 5  |-  Q.  e.  _V
87rabex 4173 . . . 4  |-  { x  e.  Q.  |  E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) }  e.  _V
97rabex 4173 . . . 4  |-  { x  e.  Q.  |  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) }  e.  _V
108, 9op1st 6199 . . 3  |-  ( 1st `  <. { x  e. 
Q.  |  E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >. )  =  { x  e.  Q.  |  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) }
116, 10eqtri 2214 . 2  |-  ( 1st `  C )  =  {
x  e.  Q.  |  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) }
124, 11elrab2 2919 1  |-  ( q  e.  ( 1st `  C
)  <->  ( q  e. 
Q.  /\  E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364   E.wex 1503    e. wcel 2164   {crab 2476   <.cop 3621   ` cfv 5254  (class class class)co 5918   1stc1st 6191   2ndc2nd 6192   Q.cnq 7340    +Q cplq 7342
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-1st 6193  df-qs 6593  df-ni 7364  df-nqqs 7408
This theorem is referenced by:  ltexprlemm  7660  ltexprlemopl  7661  ltexprlemlol  7662  ltexprlemdisj  7666  ltexprlemloc  7667  ltexprlemfl  7669  ltexprlemrl  7670
  Copyright terms: Public domain W3C validator