ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqmuladdim Unicode version

Theorem modqmuladdim 10171
Description: Implication of a decomposition of an integer into a multiple of a modulus and a remainder. (Contributed by Jim Kingdon, 23-Oct-2021.)
Assertion
Ref Expression
modqmuladdim  |-  ( ( A  e.  ZZ  /\  M  e.  QQ  /\  0  <  M )  ->  (
( A  mod  M
)  =  B  ->  E. k  e.  ZZ  A  =  ( (
k  x.  M )  +  B ) ) )
Distinct variable groups:    A, k    B, k    k, M

Proof of Theorem modqmuladdim
StepHypRef Expression
1 simpr 109 . . 3  |-  ( ( ( A  e.  ZZ  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  -> 
( A  mod  M
)  =  B )
2 simpl1 985 . . . 4  |-  ( ( ( A  e.  ZZ  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  ->  A  e.  ZZ )
3 zq 9445 . . . . . . 7  |-  ( A  e.  ZZ  ->  A  e.  QQ )
42, 3syl 14 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  ->  A  e.  QQ )
5 simpl2 986 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  ->  M  e.  QQ )
6 simpl3 987 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  -> 
0  <  M )
74, 5, 6modqcld 10132 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  -> 
( A  mod  M
)  e.  QQ )
81, 7eqeltrrd 2218 . . . 4  |-  ( ( ( A  e.  ZZ  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  ->  B  e.  QQ )
9 qre 9444 . . . . . 6  |-  ( B  e.  QQ  ->  B  e.  RR )
108, 9syl 14 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  ->  B  e.  RR )
11 modqge0 10136 . . . . . . 7  |-  ( ( A  e.  QQ  /\  M  e.  QQ  /\  0  <  M )  ->  0  <_  ( A  mod  M
) )
124, 5, 6, 11syl3anc 1217 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  -> 
0  <_  ( A  mod  M ) )
1312, 1breqtrd 3962 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  -> 
0  <_  B )
14 modqlt 10137 . . . . . . 7  |-  ( ( A  e.  QQ  /\  M  e.  QQ  /\  0  <  M )  ->  ( A  mod  M )  < 
M )
154, 5, 6, 14syl3anc 1217 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  -> 
( A  mod  M
)  <  M )
161, 15eqbrtrrd 3960 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  ->  B  <  M )
17 0re 7790 . . . . . 6  |-  0  e.  RR
18 qre 9444 . . . . . . 7  |-  ( M  e.  QQ  ->  M  e.  RR )
19 rexr 7835 . . . . . . 7  |-  ( M  e.  RR  ->  M  e.  RR* )
205, 18, 193syl 17 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  ->  M  e.  RR* )
21 elico2 9750 . . . . . 6  |-  ( ( 0  e.  RR  /\  M  e.  RR* )  -> 
( B  e.  ( 0 [,) M )  <-> 
( B  e.  RR  /\  0  <_  B  /\  B  <  M ) ) )
2217, 20, 21sylancr 411 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  -> 
( B  e.  ( 0 [,) M )  <-> 
( B  e.  RR  /\  0  <_  B  /\  B  <  M ) ) )
2310, 13, 16, 22mpbir3and 1165 . . . 4  |-  ( ( ( A  e.  ZZ  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  ->  B  e.  ( 0 [,) M ) )
242, 8, 23, 5, 6modqmuladd 10170 . . 3  |-  ( ( ( A  e.  ZZ  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  -> 
( ( A  mod  M )  =  B  <->  E. k  e.  ZZ  A  =  ( ( k  x.  M
)  +  B ) ) )
251, 24mpbid 146 . 2  |-  ( ( ( A  e.  ZZ  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  ->  E. k  e.  ZZ  A  =  ( (
k  x.  M )  +  B ) )
2625ex 114 1  |-  ( ( A  e.  ZZ  /\  M  e.  QQ  /\  0  <  M )  ->  (
( A  mod  M
)  =  B  ->  E. k  e.  ZZ  A  =  ( (
k  x.  M )  +  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 963    = wceq 1332    e. wcel 1481   E.wrex 2418   class class class wbr 3937  (class class class)co 5782   RRcr 7643   0cc0 7644    + caddc 7647    x. cmul 7649   RR*cxr 7823    < clt 7824    <_ cle 7825   ZZcz 9078   QQcq 9438   [,)cico 9703    mod cmo 10126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-po 4226  df-iso 4227  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-n0 9002  df-z 9079  df-q 9439  df-rp 9471  df-ico 9707  df-fl 10074  df-mod 10127
This theorem is referenced by:  modqmuladdnn0  10172
  Copyright terms: Public domain W3C validator