ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqmuladdim Unicode version

Theorem modqmuladdim 10584
Description: Implication of a decomposition of an integer into a multiple of a modulus and a remainder. (Contributed by Jim Kingdon, 23-Oct-2021.)
Assertion
Ref Expression
modqmuladdim  |-  ( ( A  e.  ZZ  /\  M  e.  QQ  /\  0  <  M )  ->  (
( A  mod  M
)  =  B  ->  E. k  e.  ZZ  A  =  ( (
k  x.  M )  +  B ) ) )
Distinct variable groups:    A, k    B, k    k, M

Proof of Theorem modqmuladdim
StepHypRef Expression
1 simpr 110 . . 3  |-  ( ( ( A  e.  ZZ  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  -> 
( A  mod  M
)  =  B )
2 simpl1 1024 . . . 4  |-  ( ( ( A  e.  ZZ  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  ->  A  e.  ZZ )
3 zq 9817 . . . . . . 7  |-  ( A  e.  ZZ  ->  A  e.  QQ )
42, 3syl 14 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  ->  A  e.  QQ )
5 simpl2 1025 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  ->  M  e.  QQ )
6 simpl3 1026 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  -> 
0  <  M )
74, 5, 6modqcld 10545 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  -> 
( A  mod  M
)  e.  QQ )
81, 7eqeltrrd 2307 . . . 4  |-  ( ( ( A  e.  ZZ  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  ->  B  e.  QQ )
9 qre 9816 . . . . . 6  |-  ( B  e.  QQ  ->  B  e.  RR )
108, 9syl 14 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  ->  B  e.  RR )
11 modqge0 10549 . . . . . . 7  |-  ( ( A  e.  QQ  /\  M  e.  QQ  /\  0  <  M )  ->  0  <_  ( A  mod  M
) )
124, 5, 6, 11syl3anc 1271 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  -> 
0  <_  ( A  mod  M ) )
1312, 1breqtrd 4108 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  -> 
0  <_  B )
14 modqlt 10550 . . . . . . 7  |-  ( ( A  e.  QQ  /\  M  e.  QQ  /\  0  <  M )  ->  ( A  mod  M )  < 
M )
154, 5, 6, 14syl3anc 1271 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  -> 
( A  mod  M
)  <  M )
161, 15eqbrtrrd 4106 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  ->  B  <  M )
17 0re 8142 . . . . . 6  |-  0  e.  RR
18 qre 9816 . . . . . . 7  |-  ( M  e.  QQ  ->  M  e.  RR )
19 rexr 8188 . . . . . . 7  |-  ( M  e.  RR  ->  M  e.  RR* )
205, 18, 193syl 17 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  ->  M  e.  RR* )
21 elico2 10129 . . . . . 6  |-  ( ( 0  e.  RR  /\  M  e.  RR* )  -> 
( B  e.  ( 0 [,) M )  <-> 
( B  e.  RR  /\  0  <_  B  /\  B  <  M ) ) )
2217, 20, 21sylancr 414 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  -> 
( B  e.  ( 0 [,) M )  <-> 
( B  e.  RR  /\  0  <_  B  /\  B  <  M ) ) )
2310, 13, 16, 22mpbir3and 1204 . . . 4  |-  ( ( ( A  e.  ZZ  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  ->  B  e.  ( 0 [,) M ) )
242, 8, 23, 5, 6modqmuladd 10583 . . 3  |-  ( ( ( A  e.  ZZ  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  -> 
( ( A  mod  M )  =  B  <->  E. k  e.  ZZ  A  =  ( ( k  x.  M
)  +  B ) ) )
251, 24mpbid 147 . 2  |-  ( ( ( A  e.  ZZ  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  ->  E. k  e.  ZZ  A  =  ( (
k  x.  M )  +  B ) )
2625ex 115 1  |-  ( ( A  e.  ZZ  /\  M  e.  QQ  /\  0  <  M )  ->  (
( A  mod  M
)  =  B  ->  E. k  e.  ZZ  A  =  ( (
k  x.  M )  +  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200   E.wrex 2509   class class class wbr 4082  (class class class)co 6000   RRcr 7994   0cc0 7995    + caddc 7998    x. cmul 8000   RR*cxr 8176    < clt 8177    <_ cle 8178   ZZcz 9442   QQcq 9810   [,)cico 10082    mod cmo 10539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-po 4386  df-iso 4387  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-n0 9366  df-z 9443  df-q 9811  df-rp 9846  df-ico 10086  df-fl 10485  df-mod 10540
This theorem is referenced by:  modqmuladdnn0  10585  2lgsoddprmlem2  15779
  Copyright terms: Public domain W3C validator