ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqmuladdim Unicode version

Theorem modqmuladdim 10534
Description: Implication of a decomposition of an integer into a multiple of a modulus and a remainder. (Contributed by Jim Kingdon, 23-Oct-2021.)
Assertion
Ref Expression
modqmuladdim  |-  ( ( A  e.  ZZ  /\  M  e.  QQ  /\  0  <  M )  ->  (
( A  mod  M
)  =  B  ->  E. k  e.  ZZ  A  =  ( (
k  x.  M )  +  B ) ) )
Distinct variable groups:    A, k    B, k    k, M

Proof of Theorem modqmuladdim
StepHypRef Expression
1 simpr 110 . . 3  |-  ( ( ( A  e.  ZZ  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  -> 
( A  mod  M
)  =  B )
2 simpl1 1003 . . . 4  |-  ( ( ( A  e.  ZZ  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  ->  A  e.  ZZ )
3 zq 9767 . . . . . . 7  |-  ( A  e.  ZZ  ->  A  e.  QQ )
42, 3syl 14 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  ->  A  e.  QQ )
5 simpl2 1004 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  ->  M  e.  QQ )
6 simpl3 1005 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  -> 
0  <  M )
74, 5, 6modqcld 10495 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  -> 
( A  mod  M
)  e.  QQ )
81, 7eqeltrrd 2284 . . . 4  |-  ( ( ( A  e.  ZZ  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  ->  B  e.  QQ )
9 qre 9766 . . . . . 6  |-  ( B  e.  QQ  ->  B  e.  RR )
108, 9syl 14 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  ->  B  e.  RR )
11 modqge0 10499 . . . . . . 7  |-  ( ( A  e.  QQ  /\  M  e.  QQ  /\  0  <  M )  ->  0  <_  ( A  mod  M
) )
124, 5, 6, 11syl3anc 1250 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  -> 
0  <_  ( A  mod  M ) )
1312, 1breqtrd 4077 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  -> 
0  <_  B )
14 modqlt 10500 . . . . . . 7  |-  ( ( A  e.  QQ  /\  M  e.  QQ  /\  0  <  M )  ->  ( A  mod  M )  < 
M )
154, 5, 6, 14syl3anc 1250 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  -> 
( A  mod  M
)  <  M )
161, 15eqbrtrrd 4075 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  ->  B  <  M )
17 0re 8092 . . . . . 6  |-  0  e.  RR
18 qre 9766 . . . . . . 7  |-  ( M  e.  QQ  ->  M  e.  RR )
19 rexr 8138 . . . . . . 7  |-  ( M  e.  RR  ->  M  e.  RR* )
205, 18, 193syl 17 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  ->  M  e.  RR* )
21 elico2 10079 . . . . . 6  |-  ( ( 0  e.  RR  /\  M  e.  RR* )  -> 
( B  e.  ( 0 [,) M )  <-> 
( B  e.  RR  /\  0  <_  B  /\  B  <  M ) ) )
2217, 20, 21sylancr 414 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  -> 
( B  e.  ( 0 [,) M )  <-> 
( B  e.  RR  /\  0  <_  B  /\  B  <  M ) ) )
2310, 13, 16, 22mpbir3and 1183 . . . 4  |-  ( ( ( A  e.  ZZ  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  ->  B  e.  ( 0 [,) M ) )
242, 8, 23, 5, 6modqmuladd 10533 . . 3  |-  ( ( ( A  e.  ZZ  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  -> 
( ( A  mod  M )  =  B  <->  E. k  e.  ZZ  A  =  ( ( k  x.  M
)  +  B ) ) )
251, 24mpbid 147 . 2  |-  ( ( ( A  e.  ZZ  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  ->  E. k  e.  ZZ  A  =  ( (
k  x.  M )  +  B ) )
2625ex 115 1  |-  ( ( A  e.  ZZ  /\  M  e.  QQ  /\  0  <  M )  ->  (
( A  mod  M
)  =  B  ->  E. k  e.  ZZ  A  =  ( (
k  x.  M )  +  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2177   E.wrex 2486   class class class wbr 4051  (class class class)co 5957   RRcr 7944   0cc0 7945    + caddc 7948    x. cmul 7950   RR*cxr 8126    < clt 8127    <_ cle 8128   ZZcz 9392   QQcq 9760   [,)cico 10032    mod cmo 10489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-mulrcl 8044  ax-addcom 8045  ax-mulcom 8046  ax-addass 8047  ax-mulass 8048  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-1rid 8052  ax-0id 8053  ax-rnegex 8054  ax-precex 8055  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061  ax-pre-mulgt0 8062  ax-pre-mulext 8063  ax-arch 8064
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-po 4351  df-iso 4352  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-reap 8668  df-ap 8675  df-div 8766  df-inn 9057  df-n0 9316  df-z 9393  df-q 9761  df-rp 9796  df-ico 10036  df-fl 10435  df-mod 10490
This theorem is referenced by:  modqmuladdnn0  10535  2lgsoddprmlem2  15658
  Copyright terms: Public domain W3C validator