| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > modqmuladdim | Unicode version | ||
| Description: Implication of a decomposition of an integer into a multiple of a modulus and a remainder. (Contributed by Jim Kingdon, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| modqmuladdim |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 |
. . 3
| |
| 2 | simpl1 1002 |
. . . 4
| |
| 3 | zq 9746 |
. . . . . . 7
| |
| 4 | 2, 3 | syl 14 |
. . . . . 6
|
| 5 | simpl2 1003 |
. . . . . 6
| |
| 6 | simpl3 1004 |
. . . . . 6
| |
| 7 | 4, 5, 6 | modqcld 10471 |
. . . . 5
|
| 8 | 1, 7 | eqeltrrd 2282 |
. . . 4
|
| 9 | qre 9745 |
. . . . . 6
| |
| 10 | 8, 9 | syl 14 |
. . . . 5
|
| 11 | modqge0 10475 |
. . . . . . 7
| |
| 12 | 4, 5, 6, 11 | syl3anc 1249 |
. . . . . 6
|
| 13 | 12, 1 | breqtrd 4069 |
. . . . 5
|
| 14 | modqlt 10476 |
. . . . . . 7
| |
| 15 | 4, 5, 6, 14 | syl3anc 1249 |
. . . . . 6
|
| 16 | 1, 15 | eqbrtrrd 4067 |
. . . . 5
|
| 17 | 0re 8071 |
. . . . . 6
| |
| 18 | qre 9745 |
. . . . . . 7
| |
| 19 | rexr 8117 |
. . . . . . 7
| |
| 20 | 5, 18, 19 | 3syl 17 |
. . . . . 6
|
| 21 | elico2 10058 |
. . . . . 6
| |
| 22 | 17, 20, 21 | sylancr 414 |
. . . . 5
|
| 23 | 10, 13, 16, 22 | mpbir3and 1182 |
. . . 4
|
| 24 | 2, 8, 23, 5, 6 | modqmuladd 10509 |
. . 3
|
| 25 | 1, 24 | mpbid 147 |
. 2
|
| 26 | 25 | ex 115 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-mulrcl 8023 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-precex 8034 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 ax-pre-mulgt0 8041 ax-pre-mulext 8042 ax-arch 8043 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-po 4342 df-iso 4343 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-reap 8647 df-ap 8654 df-div 8745 df-inn 9036 df-n0 9295 df-z 9372 df-q 9740 df-rp 9775 df-ico 10015 df-fl 10411 df-mod 10466 |
| This theorem is referenced by: modqmuladdnn0 10511 2lgsoddprmlem2 15525 |
| Copyright terms: Public domain | W3C validator |