ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addmodid Unicode version

Theorem addmodid 10581
Description: The sum of a positive integer and a nonnegative integer less than the positive integer is equal to the nonnegative integer modulo the positive integer. (Contributed by Alexander van der Vekens, 30-Oct-2018.) (Proof shortened by AV, 5-Jul-2020.)
Assertion
Ref Expression
addmodid  |-  ( ( A  e.  NN0  /\  M  e.  NN  /\  A  <  M )  ->  (
( M  +  A
)  mod  M )  =  A )

Proof of Theorem addmodid
StepHypRef Expression
1 simp2 1022 . . . . . . 7  |-  ( ( A  e.  NN0  /\  M  e.  NN  /\  A  <  M )  ->  M  e.  NN )
21nncnd 9112 . . . . . 6  |-  ( ( A  e.  NN0  /\  M  e.  NN  /\  A  <  M )  ->  M  e.  CC )
32mulid2d 8153 . . . . 5  |-  ( ( A  e.  NN0  /\  M  e.  NN  /\  A  <  M )  ->  (
1  x.  M )  =  M )
43eqcomd 2235 . . . 4  |-  ( ( A  e.  NN0  /\  M  e.  NN  /\  A  <  M )  ->  M  =  ( 1  x.  M ) )
54oveq1d 6009 . . 3  |-  ( ( A  e.  NN0  /\  M  e.  NN  /\  A  <  M )  ->  ( M  +  A )  =  ( ( 1  x.  M )  +  A ) )
65oveq1d 6009 . 2  |-  ( ( A  e.  NN0  /\  M  e.  NN  /\  A  <  M )  ->  (
( M  +  A
)  mod  M )  =  ( ( ( 1  x.  M )  +  A )  mod 
M ) )
7 1zzd 9461 . . 3  |-  ( ( A  e.  NN0  /\  M  e.  NN  /\  A  <  M )  ->  1  e.  ZZ )
8 nnq 9816 . . . 4  |-  ( M  e.  NN  ->  M  e.  QQ )
983ad2ant2 1043 . . 3  |-  ( ( A  e.  NN0  /\  M  e.  NN  /\  A  <  M )  ->  M  e.  QQ )
10 simp1 1021 . . . . 5  |-  ( ( A  e.  NN0  /\  M  e.  NN  /\  A  <  M )  ->  A  e.  NN0 )
1110nn0zd 9555 . . . 4  |-  ( ( A  e.  NN0  /\  M  e.  NN  /\  A  <  M )  ->  A  e.  ZZ )
12 zq 9809 . . . 4  |-  ( A  e.  ZZ  ->  A  e.  QQ )
1311, 12syl 14 . . 3  |-  ( ( A  e.  NN0  /\  M  e.  NN  /\  A  <  M )  ->  A  e.  QQ )
14 nn0re 9366 . . . . 5  |-  ( A  e.  NN0  ->  A  e.  RR )
15143ad2ant1 1042 . . . 4  |-  ( ( A  e.  NN0  /\  M  e.  NN  /\  A  <  M )  ->  A  e.  RR )
1610nn0ge0d 9413 . . . 4  |-  ( ( A  e.  NN0  /\  M  e.  NN  /\  A  <  M )  ->  0  <_  A )
17 simp3 1023 . . . 4  |-  ( ( A  e.  NN0  /\  M  e.  NN  /\  A  <  M )  ->  A  <  M )
18 0re 8134 . . . . 5  |-  0  e.  RR
19 nnre 9105 . . . . . . 7  |-  ( M  e.  NN  ->  M  e.  RR )
2019rexrd 8184 . . . . . 6  |-  ( M  e.  NN  ->  M  e.  RR* )
21203ad2ant2 1043 . . . . 5  |-  ( ( A  e.  NN0  /\  M  e.  NN  /\  A  <  M )  ->  M  e.  RR* )
22 elico2 10121 . . . . 5  |-  ( ( 0  e.  RR  /\  M  e.  RR* )  -> 
( A  e.  ( 0 [,) M )  <-> 
( A  e.  RR  /\  0  <_  A  /\  A  <  M ) ) )
2318, 21, 22sylancr 414 . . . 4  |-  ( ( A  e.  NN0  /\  M  e.  NN  /\  A  <  M )  ->  ( A  e.  ( 0 [,) M )  <->  ( A  e.  RR  /\  0  <_  A  /\  A  <  M
) ) )
2415, 16, 17, 23mpbir3and 1204 . . 3  |-  ( ( A  e.  NN0  /\  M  e.  NN  /\  A  <  M )  ->  A  e.  ( 0 [,) M
) )
25 mulqaddmodid 10573 . . 3  |-  ( ( ( 1  e.  ZZ  /\  M  e.  QQ )  /\  ( A  e.  QQ  /\  A  e.  ( 0 [,) M
) ) )  -> 
( ( ( 1  x.  M )  +  A )  mod  M
)  =  A )
267, 9, 13, 24, 25syl22anc 1272 . 2  |-  ( ( A  e.  NN0  /\  M  e.  NN  /\  A  <  M )  ->  (
( ( 1  x.  M )  +  A
)  mod  M )  =  A )
276, 26eqtrd 2262 1  |-  ( ( A  e.  NN0  /\  M  e.  NN  /\  A  <  M )  ->  (
( M  +  A
)  mod  M )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200   class class class wbr 4082  (class class class)co 5994   RRcr 7986   0cc0 7987   1c1 7988    + caddc 7990    x. cmul 7992   RR*cxr 8168    < clt 8169    <_ cle 8170   NNcn 9098   NN0cn0 9357   ZZcz 9434   QQcq 9802   [,)cico 10074    mod cmo 10531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-mulrcl 8086  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-precex 8097  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103  ax-pre-mulgt0 8104  ax-pre-mulext 8105  ax-arch 8106
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-po 4384  df-iso 4385  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-reap 8710  df-ap 8717  df-div 8808  df-inn 9099  df-n0 9358  df-z 9435  df-q 9803  df-rp 9838  df-ico 10078  df-fl 10477  df-mod 10532
This theorem is referenced by:  addmodidr  10582
  Copyright terms: Public domain W3C validator