ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addmodid Unicode version

Theorem addmodid 10176
Description: The sum of a positive integer and a nonnegative integer less than the positive integer is equal to the nonnegative integer modulo the positive integer. (Contributed by Alexander van der Vekens, 30-Oct-2018.) (Proof shortened by AV, 5-Jul-2020.)
Assertion
Ref Expression
addmodid  |-  ( ( A  e.  NN0  /\  M  e.  NN  /\  A  <  M )  ->  (
( M  +  A
)  mod  M )  =  A )

Proof of Theorem addmodid
StepHypRef Expression
1 simp2 983 . . . . . . 7  |-  ( ( A  e.  NN0  /\  M  e.  NN  /\  A  <  M )  ->  M  e.  NN )
21nncnd 8758 . . . . . 6  |-  ( ( A  e.  NN0  /\  M  e.  NN  /\  A  <  M )  ->  M  e.  CC )
32mulid2d 7808 . . . . 5  |-  ( ( A  e.  NN0  /\  M  e.  NN  /\  A  <  M )  ->  (
1  x.  M )  =  M )
43eqcomd 2146 . . . 4  |-  ( ( A  e.  NN0  /\  M  e.  NN  /\  A  <  M )  ->  M  =  ( 1  x.  M ) )
54oveq1d 5797 . . 3  |-  ( ( A  e.  NN0  /\  M  e.  NN  /\  A  <  M )  ->  ( M  +  A )  =  ( ( 1  x.  M )  +  A ) )
65oveq1d 5797 . 2  |-  ( ( A  e.  NN0  /\  M  e.  NN  /\  A  <  M )  ->  (
( M  +  A
)  mod  M )  =  ( ( ( 1  x.  M )  +  A )  mod 
M ) )
7 1zzd 9105 . . 3  |-  ( ( A  e.  NN0  /\  M  e.  NN  /\  A  <  M )  ->  1  e.  ZZ )
8 nnq 9452 . . . 4  |-  ( M  e.  NN  ->  M  e.  QQ )
983ad2ant2 1004 . . 3  |-  ( ( A  e.  NN0  /\  M  e.  NN  /\  A  <  M )  ->  M  e.  QQ )
10 simp1 982 . . . . 5  |-  ( ( A  e.  NN0  /\  M  e.  NN  /\  A  <  M )  ->  A  e.  NN0 )
1110nn0zd 9195 . . . 4  |-  ( ( A  e.  NN0  /\  M  e.  NN  /\  A  <  M )  ->  A  e.  ZZ )
12 zq 9445 . . . 4  |-  ( A  e.  ZZ  ->  A  e.  QQ )
1311, 12syl 14 . . 3  |-  ( ( A  e.  NN0  /\  M  e.  NN  /\  A  <  M )  ->  A  e.  QQ )
14 nn0re 9010 . . . . 5  |-  ( A  e.  NN0  ->  A  e.  RR )
15143ad2ant1 1003 . . . 4  |-  ( ( A  e.  NN0  /\  M  e.  NN  /\  A  <  M )  ->  A  e.  RR )
1610nn0ge0d 9057 . . . 4  |-  ( ( A  e.  NN0  /\  M  e.  NN  /\  A  <  M )  ->  0  <_  A )
17 simp3 984 . . . 4  |-  ( ( A  e.  NN0  /\  M  e.  NN  /\  A  <  M )  ->  A  <  M )
18 0re 7790 . . . . 5  |-  0  e.  RR
19 nnre 8751 . . . . . . 7  |-  ( M  e.  NN  ->  M  e.  RR )
2019rexrd 7839 . . . . . 6  |-  ( M  e.  NN  ->  M  e.  RR* )
21203ad2ant2 1004 . . . . 5  |-  ( ( A  e.  NN0  /\  M  e.  NN  /\  A  <  M )  ->  M  e.  RR* )
22 elico2 9750 . . . . 5  |-  ( ( 0  e.  RR  /\  M  e.  RR* )  -> 
( A  e.  ( 0 [,) M )  <-> 
( A  e.  RR  /\  0  <_  A  /\  A  <  M ) ) )
2318, 21, 22sylancr 411 . . . 4  |-  ( ( A  e.  NN0  /\  M  e.  NN  /\  A  <  M )  ->  ( A  e.  ( 0 [,) M )  <->  ( A  e.  RR  /\  0  <_  A  /\  A  <  M
) ) )
2415, 16, 17, 23mpbir3and 1165 . . 3  |-  ( ( A  e.  NN0  /\  M  e.  NN  /\  A  <  M )  ->  A  e.  ( 0 [,) M
) )
25 mulqaddmodid 10168 . . 3  |-  ( ( ( 1  e.  ZZ  /\  M  e.  QQ )  /\  ( A  e.  QQ  /\  A  e.  ( 0 [,) M
) ) )  -> 
( ( ( 1  x.  M )  +  A )  mod  M
)  =  A )
267, 9, 13, 24, 25syl22anc 1218 . 2  |-  ( ( A  e.  NN0  /\  M  e.  NN  /\  A  <  M )  ->  (
( ( 1  x.  M )  +  A
)  mod  M )  =  A )
276, 26eqtrd 2173 1  |-  ( ( A  e.  NN0  /\  M  e.  NN  /\  A  <  M )  ->  (
( M  +  A
)  mod  M )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    /\ w3a 963    = wceq 1332    e. wcel 1481   class class class wbr 3937  (class class class)co 5782   RRcr 7643   0cc0 7644   1c1 7645    + caddc 7647    x. cmul 7649   RR*cxr 7823    < clt 7824    <_ cle 7825   NNcn 8744   NN0cn0 9001   ZZcz 9078   QQcq 9438   [,)cico 9703    mod cmo 10126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-po 4226  df-iso 4227  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-n0 9002  df-z 9079  df-q 9439  df-rp 9471  df-ico 9707  df-fl 10074  df-mod 10127
This theorem is referenced by:  addmodidr  10177
  Copyright terms: Public domain W3C validator