ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zmodfz Unicode version

Theorem zmodfz 10346
Description: An integer mod  B lies in the first  B nonnegative integers. (Contributed by Jeff Madsen, 17-Jun-2010.)
Assertion
Ref Expression
zmodfz  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( A  mod  B
)  e.  ( 0 ... ( B  - 
1 ) ) )

Proof of Theorem zmodfz
StepHypRef Expression
1 zmodcl 10344 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( A  mod  B
)  e.  NN0 )
21nn0zd 9373 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( A  mod  B
)  e.  ZZ )
31nn0ge0d 9232 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  0  <_  ( A  mod  B ) )
4 zq 9626 . . . 4  |-  ( A  e.  ZZ  ->  A  e.  QQ )
54adantr 276 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  A  e.  QQ )
6 nnq 9633 . . . 4  |-  ( B  e.  NN  ->  B  e.  QQ )
76adantl 277 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  B  e.  QQ )
8 nngt0 8944 . . . 4  |-  ( B  e.  NN  ->  0  <  B )
98adantl 277 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  0  <  B )
10 modqlt 10333 . . 3  |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  ->  ( A  mod  B )  < 
B )
115, 7, 9, 10syl3anc 1238 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( A  mod  B
)  <  B )
12 0z 9264 . . 3  |-  0  e.  ZZ
13 nnz 9272 . . . 4  |-  ( B  e.  NN  ->  B  e.  ZZ )
1413adantl 277 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  B  e.  ZZ )
15 elfzm11 10091 . . 3  |-  ( ( 0  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  mod  B )  e.  ( 0 ... ( B  - 
1 ) )  <->  ( ( A  mod  B )  e.  ZZ  /\  0  <_ 
( A  mod  B
)  /\  ( A  mod  B )  <  B
) ) )
1612, 14, 15sylancr 414 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( ( A  mod  B )  e.  ( 0 ... ( B  - 
1 ) )  <->  ( ( A  mod  B )  e.  ZZ  /\  0  <_ 
( A  mod  B
)  /\  ( A  mod  B )  <  B
) ) )
172, 3, 11, 16mpbir3and 1180 1  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( A  mod  B
)  e.  ( 0 ... ( B  - 
1 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    e. wcel 2148   class class class wbr 4004  (class class class)co 5875   0cc0 7811   1c1 7812    < clt 7992    <_ cle 7993    - cmin 8128   NNcn 8919   ZZcz 9253   QQcq 9619   ...cfz 10008    mod cmo 10322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-mulrcl 7910  ax-addcom 7911  ax-mulcom 7912  ax-addass 7913  ax-mulass 7914  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-1rid 7918  ax-0id 7919  ax-rnegex 7920  ax-precex 7921  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-apti 7926  ax-pre-ltadd 7927  ax-pre-mulgt0 7928  ax-pre-mulext 7929  ax-arch 7930
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-po 4297  df-iso 4298  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-reap 8532  df-ap 8539  df-div 8630  df-inn 8920  df-n0 9177  df-z 9254  df-q 9620  df-rp 9654  df-fz 10009  df-fl 10270  df-mod 10323
This theorem is referenced by:  zmodfzo  10347  mod2eq1n2dvds  11884  bezoutlemmain  11999  prmdiv  12235  lgsdir2lem3  14434  lgseisenlem1  14453
  Copyright terms: Public domain W3C validator