ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zmodfz Unicode version

Theorem zmodfz 10289
Description: An integer mod  B lies in the first  B nonnegative integers. (Contributed by Jeff Madsen, 17-Jun-2010.)
Assertion
Ref Expression
zmodfz  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( A  mod  B
)  e.  ( 0 ... ( B  - 
1 ) ) )

Proof of Theorem zmodfz
StepHypRef Expression
1 zmodcl 10287 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( A  mod  B
)  e.  NN0 )
21nn0zd 9319 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( A  mod  B
)  e.  ZZ )
31nn0ge0d 9178 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  0  <_  ( A  mod  B ) )
4 zq 9572 . . . 4  |-  ( A  e.  ZZ  ->  A  e.  QQ )
54adantr 274 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  A  e.  QQ )
6 nnq 9579 . . . 4  |-  ( B  e.  NN  ->  B  e.  QQ )
76adantl 275 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  B  e.  QQ )
8 nngt0 8890 . . . 4  |-  ( B  e.  NN  ->  0  <  B )
98adantl 275 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  0  <  B )
10 modqlt 10276 . . 3  |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  ->  ( A  mod  B )  < 
B )
115, 7, 9, 10syl3anc 1233 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( A  mod  B
)  <  B )
12 0z 9210 . . 3  |-  0  e.  ZZ
13 nnz 9218 . . . 4  |-  ( B  e.  NN  ->  B  e.  ZZ )
1413adantl 275 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  B  e.  ZZ )
15 elfzm11 10034 . . 3  |-  ( ( 0  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  mod  B )  e.  ( 0 ... ( B  - 
1 ) )  <->  ( ( A  mod  B )  e.  ZZ  /\  0  <_ 
( A  mod  B
)  /\  ( A  mod  B )  <  B
) ) )
1612, 14, 15sylancr 412 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( ( A  mod  B )  e.  ( 0 ... ( B  - 
1 ) )  <->  ( ( A  mod  B )  e.  ZZ  /\  0  <_ 
( A  mod  B
)  /\  ( A  mod  B )  <  B
) ) )
172, 3, 11, 16mpbir3and 1175 1  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( A  mod  B
)  e.  ( 0 ... ( B  - 
1 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 973    e. wcel 2141   class class class wbr 3987  (class class class)co 5850   0cc0 7761   1c1 7762    < clt 7941    <_ cle 7942    - cmin 8077   NNcn 8865   ZZcz 9199   QQcq 9565   ...cfz 9952    mod cmo 10265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-cnex 7852  ax-resscn 7853  ax-1cn 7854  ax-1re 7855  ax-icn 7856  ax-addcl 7857  ax-addrcl 7858  ax-mulcl 7859  ax-mulrcl 7860  ax-addcom 7861  ax-mulcom 7862  ax-addass 7863  ax-mulass 7864  ax-distr 7865  ax-i2m1 7866  ax-0lt1 7867  ax-1rid 7868  ax-0id 7869  ax-rnegex 7870  ax-precex 7871  ax-cnre 7872  ax-pre-ltirr 7873  ax-pre-ltwlin 7874  ax-pre-lttrn 7875  ax-pre-apti 7876  ax-pre-ltadd 7877  ax-pre-mulgt0 7878  ax-pre-mulext 7879  ax-arch 7880
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-id 4276  df-po 4279  df-iso 4280  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-fv 5204  df-riota 5806  df-ov 5853  df-oprab 5854  df-mpo 5855  df-1st 6116  df-2nd 6117  df-pnf 7943  df-mnf 7944  df-xr 7945  df-ltxr 7946  df-le 7947  df-sub 8079  df-neg 8080  df-reap 8481  df-ap 8488  df-div 8577  df-inn 8866  df-n0 9123  df-z 9200  df-q 9566  df-rp 9598  df-fz 9953  df-fl 10213  df-mod 10266
This theorem is referenced by:  zmodfzo  10290  mod2eq1n2dvds  11825  bezoutlemmain  11940  prmdiv  12176  lgsdir2lem3  13684
  Copyright terms: Public domain W3C validator