ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negm Unicode version

Theorem negm 9706
Description: The image under negation of an inhabited set of reals is inhabited. (Contributed by Jim Kingdon, 10-Apr-2020.)
Assertion
Ref Expression
negm  |-  ( ( A  C_  RR  /\  E. x  x  e.  A
)  ->  E. y 
y  e.  { z  e.  RR  |  -u z  e.  A }
)
Distinct variable group:    x, A, y, z

Proof of Theorem negm
StepHypRef Expression
1 ssel 3178 . . . . 5  |-  ( A 
C_  RR  ->  ( x  e.  A  ->  x  e.  RR ) )
2 renegcl 8304 . . . . . . . 8  |-  ( x  e.  RR  ->  -u x  e.  RR )
3 negeq 8236 . . . . . . . . . 10  |-  ( z  =  -u x  ->  -u z  =  -u -u x )
43eleq1d 2265 . . . . . . . . 9  |-  ( z  =  -u x  ->  ( -u z  e.  A  <->  -u -u x  e.  A ) )
54elrab3 2921 . . . . . . . 8  |-  ( -u x  e.  RR  ->  (
-u x  e.  {
z  e.  RR  |  -u z  e.  A }  <->  -u -u x  e.  A
) )
62, 5syl 14 . . . . . . 7  |-  ( x  e.  RR  ->  ( -u x  e.  { z  e.  RR  |  -u z  e.  A }  <->  -u -u x  e.  A
) )
7 recn 8029 . . . . . . . . 9  |-  ( x  e.  RR  ->  x  e.  CC )
87negnegd 8345 . . . . . . . 8  |-  ( x  e.  RR  ->  -u -u x  =  x )
98eleq1d 2265 . . . . . . 7  |-  ( x  e.  RR  ->  ( -u -u x  e.  A  <->  x  e.  A ) )
106, 9bitrd 188 . . . . . 6  |-  ( x  e.  RR  ->  ( -u x  e.  { z  e.  RR  |  -u z  e.  A }  <->  x  e.  A ) )
1110biimprd 158 . . . . 5  |-  ( x  e.  RR  ->  (
x  e.  A  ->  -u x  e.  { z  e.  RR  |  -u z  e.  A }
) )
121, 11syli 37 . . . 4  |-  ( A 
C_  RR  ->  ( x  e.  A  ->  -u x  e.  { z  e.  RR  |  -u z  e.  A } ) )
13 elex2 2779 . . . 4  |-  ( -u x  e.  { z  e.  RR  |  -u z  e.  A }  ->  E. y 
y  e.  { z  e.  RR  |  -u z  e.  A }
)
1412, 13syl6 33 . . 3  |-  ( A 
C_  RR  ->  ( x  e.  A  ->  E. y 
y  e.  { z  e.  RR  |  -u z  e.  A }
) )
1514exlimdv 1833 . 2  |-  ( A 
C_  RR  ->  ( E. x  x  e.  A  ->  E. y  y  e. 
{ z  e.  RR  |  -u z  e.  A } ) )
1615imp 124 1  |-  ( ( A  C_  RR  /\  E. x  x  e.  A
)  ->  E. y 
y  e.  { z  e.  RR  |  -u z  e.  A }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364   E.wex 1506    e. wcel 2167   {crab 2479    C_ wss 3157   RRcr 7895   -ucneg 8215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-setind 4574  ax-resscn 7988  ax-1cn 7989  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-sub 8216  df-neg 8217
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator