ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negm Unicode version

Theorem negm 9810
Description: The image under negation of an inhabited set of reals is inhabited. (Contributed by Jim Kingdon, 10-Apr-2020.)
Assertion
Ref Expression
negm  |-  ( ( A  C_  RR  /\  E. x  x  e.  A
)  ->  E. y 
y  e.  { z  e.  RR  |  -u z  e.  A }
)
Distinct variable group:    x, A, y, z

Proof of Theorem negm
StepHypRef Expression
1 ssel 3218 . . . . 5  |-  ( A 
C_  RR  ->  ( x  e.  A  ->  x  e.  RR ) )
2 renegcl 8407 . . . . . . . 8  |-  ( x  e.  RR  ->  -u x  e.  RR )
3 negeq 8339 . . . . . . . . . 10  |-  ( z  =  -u x  ->  -u z  =  -u -u x )
43eleq1d 2298 . . . . . . . . 9  |-  ( z  =  -u x  ->  ( -u z  e.  A  <->  -u -u x  e.  A ) )
54elrab3 2960 . . . . . . . 8  |-  ( -u x  e.  RR  ->  (
-u x  e.  {
z  e.  RR  |  -u z  e.  A }  <->  -u -u x  e.  A
) )
62, 5syl 14 . . . . . . 7  |-  ( x  e.  RR  ->  ( -u x  e.  { z  e.  RR  |  -u z  e.  A }  <->  -u -u x  e.  A
) )
7 recn 8132 . . . . . . . . 9  |-  ( x  e.  RR  ->  x  e.  CC )
87negnegd 8448 . . . . . . . 8  |-  ( x  e.  RR  ->  -u -u x  =  x )
98eleq1d 2298 . . . . . . 7  |-  ( x  e.  RR  ->  ( -u -u x  e.  A  <->  x  e.  A ) )
106, 9bitrd 188 . . . . . 6  |-  ( x  e.  RR  ->  ( -u x  e.  { z  e.  RR  |  -u z  e.  A }  <->  x  e.  A ) )
1110biimprd 158 . . . . 5  |-  ( x  e.  RR  ->  (
x  e.  A  ->  -u x  e.  { z  e.  RR  |  -u z  e.  A }
) )
121, 11syli 37 . . . 4  |-  ( A 
C_  RR  ->  ( x  e.  A  ->  -u x  e.  { z  e.  RR  |  -u z  e.  A } ) )
13 elex2 2816 . . . 4  |-  ( -u x  e.  { z  e.  RR  |  -u z  e.  A }  ->  E. y 
y  e.  { z  e.  RR  |  -u z  e.  A }
)
1412, 13syl6 33 . . 3  |-  ( A 
C_  RR  ->  ( x  e.  A  ->  E. y 
y  e.  { z  e.  RR  |  -u z  e.  A }
) )
1514exlimdv 1865 . 2  |-  ( A 
C_  RR  ->  ( E. x  x  e.  A  ->  E. y  y  e. 
{ z  e.  RR  |  -u z  e.  A } ) )
1615imp 124 1  |-  ( ( A  C_  RR  /\  E. x  x  e.  A
)  ->  E. y 
y  e.  { z  e.  RR  |  -u z  e.  A }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395   E.wex 1538    e. wcel 2200   {crab 2512    C_ wss 3197   RRcr 7998   -ucneg 8318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-setind 4629  ax-resscn 8091  ax-1cn 8092  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-sub 8319  df-neg 8320
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator