ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negm GIF version

Theorem negm 9617
Description: The image under negation of an inhabited set of reals is inhabited. (Contributed by Jim Kingdon, 10-Apr-2020.)
Assertion
Ref Expression
negm ((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) → ∃𝑦 𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴})
Distinct variable group:   𝑥,𝐴,𝑦,𝑧

Proof of Theorem negm
StepHypRef Expression
1 ssel 3151 . . . . 5 (𝐴 ⊆ ℝ → (𝑥𝐴𝑥 ∈ ℝ))
2 renegcl 8220 . . . . . . . 8 (𝑥 ∈ ℝ → -𝑥 ∈ ℝ)
3 negeq 8152 . . . . . . . . . 10 (𝑧 = -𝑥 → -𝑧 = --𝑥)
43eleq1d 2246 . . . . . . . . 9 (𝑧 = -𝑥 → (-𝑧𝐴 ↔ --𝑥𝐴))
54elrab3 2896 . . . . . . . 8 (-𝑥 ∈ ℝ → (-𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴} ↔ --𝑥𝐴))
62, 5syl 14 . . . . . . 7 (𝑥 ∈ ℝ → (-𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴} ↔ --𝑥𝐴))
7 recn 7946 . . . . . . . . 9 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
87negnegd 8261 . . . . . . . 8 (𝑥 ∈ ℝ → --𝑥 = 𝑥)
98eleq1d 2246 . . . . . . 7 (𝑥 ∈ ℝ → (--𝑥𝐴𝑥𝐴))
106, 9bitrd 188 . . . . . 6 (𝑥 ∈ ℝ → (-𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴} ↔ 𝑥𝐴))
1110biimprd 158 . . . . 5 (𝑥 ∈ ℝ → (𝑥𝐴 → -𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}))
121, 11syli 37 . . . 4 (𝐴 ⊆ ℝ → (𝑥𝐴 → -𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}))
13 elex2 2755 . . . 4 (-𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴} → ∃𝑦 𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴})
1412, 13syl6 33 . . 3 (𝐴 ⊆ ℝ → (𝑥𝐴 → ∃𝑦 𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}))
1514exlimdv 1819 . 2 (𝐴 ⊆ ℝ → (∃𝑥 𝑥𝐴 → ∃𝑦 𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}))
1615imp 124 1 ((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) → ∃𝑦 𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wex 1492  wcel 2148  {crab 2459  wss 3131  cr 7812  -cneg 8131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-setind 4538  ax-resscn 7905  ax-1cn 7906  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-distr 7917  ax-i2m1 7918  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-sub 8132  df-neg 8133
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator