ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negm GIF version

Theorem negm 8993
Description: The image under negation of an inhabited set of reals is inhabited. (Contributed by Jim Kingdon, 10-Apr-2020.)
Assertion
Ref Expression
negm ((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) → ∃𝑦 𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴})
Distinct variable group:   𝑥,𝐴,𝑦,𝑧

Proof of Theorem negm
StepHypRef Expression
1 ssel 3004 . . . . 5 (𝐴 ⊆ ℝ → (𝑥𝐴𝑥 ∈ ℝ))
2 renegcl 7644 . . . . . . . 8 (𝑥 ∈ ℝ → -𝑥 ∈ ℝ)
3 negeq 7576 . . . . . . . . . 10 (𝑧 = -𝑥 → -𝑧 = --𝑥)
43eleq1d 2151 . . . . . . . . 9 (𝑧 = -𝑥 → (-𝑧𝐴 ↔ --𝑥𝐴))
54elrab3 2760 . . . . . . . 8 (-𝑥 ∈ ℝ → (-𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴} ↔ --𝑥𝐴))
62, 5syl 14 . . . . . . 7 (𝑥 ∈ ℝ → (-𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴} ↔ --𝑥𝐴))
7 recn 7376 . . . . . . . . 9 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
87negnegd 7685 . . . . . . . 8 (𝑥 ∈ ℝ → --𝑥 = 𝑥)
98eleq1d 2151 . . . . . . 7 (𝑥 ∈ ℝ → (--𝑥𝐴𝑥𝐴))
106, 9bitrd 186 . . . . . 6 (𝑥 ∈ ℝ → (-𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴} ↔ 𝑥𝐴))
1110biimprd 156 . . . . 5 (𝑥 ∈ ℝ → (𝑥𝐴 → -𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}))
121, 11syli 37 . . . 4 (𝐴 ⊆ ℝ → (𝑥𝐴 → -𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}))
13 elex2 2626 . . . 4 (-𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴} → ∃𝑦 𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴})
1412, 13syl6 33 . . 3 (𝐴 ⊆ ℝ → (𝑥𝐴 → ∃𝑦 𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}))
1514exlimdv 1742 . 2 (𝐴 ⊆ ℝ → (∃𝑥 𝑥𝐴 → ∃𝑦 𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}))
1615imp 122 1 ((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) → ∃𝑦 𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1285  wex 1422  wcel 1434  {crab 2357  wss 2984  cr 7250  -cneg 7555
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3922  ax-pow 3974  ax-pr 3999  ax-setind 4315  ax-resscn 7338  ax-1cn 7339  ax-icn 7341  ax-addcl 7342  ax-addrcl 7343  ax-mulcl 7344  ax-addcom 7346  ax-addass 7348  ax-distr 7350  ax-i2m1 7351  ax-0id 7354  ax-rnegex 7355  ax-cnre 7357
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2614  df-sbc 2827  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-br 3812  df-opab 3866  df-id 4083  df-xp 4405  df-rel 4406  df-cnv 4407  df-co 4408  df-dm 4409  df-iota 4932  df-fun 4969  df-fv 4975  df-riota 5545  df-ov 5592  df-oprab 5593  df-mpt2 5594  df-sub 7556  df-neg 7557
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator