| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > negm | GIF version | ||
| Description: The image under negation of an inhabited set of reals is inhabited. (Contributed by Jim Kingdon, 10-Apr-2020.) |
| Ref | Expression |
|---|---|
| negm | ⊢ ((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥 ∈ 𝐴) → ∃𝑦 𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3218 | . . . . 5 ⊢ (𝐴 ⊆ ℝ → (𝑥 ∈ 𝐴 → 𝑥 ∈ ℝ)) | |
| 2 | renegcl 8407 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ → -𝑥 ∈ ℝ) | |
| 3 | negeq 8339 | . . . . . . . . . 10 ⊢ (𝑧 = -𝑥 → -𝑧 = --𝑥) | |
| 4 | 3 | eleq1d 2298 | . . . . . . . . 9 ⊢ (𝑧 = -𝑥 → (-𝑧 ∈ 𝐴 ↔ --𝑥 ∈ 𝐴)) |
| 5 | 4 | elrab3 2960 | . . . . . . . 8 ⊢ (-𝑥 ∈ ℝ → (-𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} ↔ --𝑥 ∈ 𝐴)) |
| 6 | 2, 5 | syl 14 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ → (-𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} ↔ --𝑥 ∈ 𝐴)) |
| 7 | recn 8132 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℝ → 𝑥 ∈ ℂ) | |
| 8 | 7 | negnegd 8448 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ → --𝑥 = 𝑥) |
| 9 | 8 | eleq1d 2298 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ → (--𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) |
| 10 | 6, 9 | bitrd 188 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → (-𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} ↔ 𝑥 ∈ 𝐴)) |
| 11 | 10 | biimprd 158 | . . . . 5 ⊢ (𝑥 ∈ ℝ → (𝑥 ∈ 𝐴 → -𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴})) |
| 12 | 1, 11 | syli 37 | . . . 4 ⊢ (𝐴 ⊆ ℝ → (𝑥 ∈ 𝐴 → -𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴})) |
| 13 | elex2 2816 | . . . 4 ⊢ (-𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} → ∃𝑦 𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}) | |
| 14 | 12, 13 | syl6 33 | . . 3 ⊢ (𝐴 ⊆ ℝ → (𝑥 ∈ 𝐴 → ∃𝑦 𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴})) |
| 15 | 14 | exlimdv 1865 | . 2 ⊢ (𝐴 ⊆ ℝ → (∃𝑥 𝑥 ∈ 𝐴 → ∃𝑦 𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴})) |
| 16 | 15 | imp 124 | 1 ⊢ ((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥 ∈ 𝐴) → ∃𝑦 𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∃wex 1538 ∈ wcel 2200 {crab 2512 ⊆ wss 3197 ℝcr 7998 -cneg 8318 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-setind 4629 ax-resscn 8091 ax-1cn 8092 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-distr 8103 ax-i2m1 8104 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-sub 8319 df-neg 8320 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |