ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negm GIF version

Theorem negm 9683
Description: The image under negation of an inhabited set of reals is inhabited. (Contributed by Jim Kingdon, 10-Apr-2020.)
Assertion
Ref Expression
negm ((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) → ∃𝑦 𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴})
Distinct variable group:   𝑥,𝐴,𝑦,𝑧

Proof of Theorem negm
StepHypRef Expression
1 ssel 3174 . . . . 5 (𝐴 ⊆ ℝ → (𝑥𝐴𝑥 ∈ ℝ))
2 renegcl 8282 . . . . . . . 8 (𝑥 ∈ ℝ → -𝑥 ∈ ℝ)
3 negeq 8214 . . . . . . . . . 10 (𝑧 = -𝑥 → -𝑧 = --𝑥)
43eleq1d 2262 . . . . . . . . 9 (𝑧 = -𝑥 → (-𝑧𝐴 ↔ --𝑥𝐴))
54elrab3 2918 . . . . . . . 8 (-𝑥 ∈ ℝ → (-𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴} ↔ --𝑥𝐴))
62, 5syl 14 . . . . . . 7 (𝑥 ∈ ℝ → (-𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴} ↔ --𝑥𝐴))
7 recn 8007 . . . . . . . . 9 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
87negnegd 8323 . . . . . . . 8 (𝑥 ∈ ℝ → --𝑥 = 𝑥)
98eleq1d 2262 . . . . . . 7 (𝑥 ∈ ℝ → (--𝑥𝐴𝑥𝐴))
106, 9bitrd 188 . . . . . 6 (𝑥 ∈ ℝ → (-𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴} ↔ 𝑥𝐴))
1110biimprd 158 . . . . 5 (𝑥 ∈ ℝ → (𝑥𝐴 → -𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}))
121, 11syli 37 . . . 4 (𝐴 ⊆ ℝ → (𝑥𝐴 → -𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}))
13 elex2 2776 . . . 4 (-𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴} → ∃𝑦 𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴})
1412, 13syl6 33 . . 3 (𝐴 ⊆ ℝ → (𝑥𝐴 → ∃𝑦 𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}))
1514exlimdv 1830 . 2 (𝐴 ⊆ ℝ → (∃𝑥 𝑥𝐴 → ∃𝑦 𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}))
1615imp 124 1 ((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) → ∃𝑦 𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wex 1503  wcel 2164  {crab 2476  wss 3154  cr 7873  -cneg 8193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-setind 4570  ax-resscn 7966  ax-1cn 7967  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-iota 5216  df-fun 5257  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-sub 8194  df-neg 8195
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator