![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > negm | GIF version |
Description: The image under negation of an inhabited set of reals is inhabited. (Contributed by Jim Kingdon, 10-Apr-2020.) |
Ref | Expression |
---|---|
negm | ⊢ ((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥 ∈ 𝐴) → ∃𝑦 𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3164 | . . . . 5 ⊢ (𝐴 ⊆ ℝ → (𝑥 ∈ 𝐴 → 𝑥 ∈ ℝ)) | |
2 | renegcl 8243 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ → -𝑥 ∈ ℝ) | |
3 | negeq 8175 | . . . . . . . . . 10 ⊢ (𝑧 = -𝑥 → -𝑧 = --𝑥) | |
4 | 3 | eleq1d 2258 | . . . . . . . . 9 ⊢ (𝑧 = -𝑥 → (-𝑧 ∈ 𝐴 ↔ --𝑥 ∈ 𝐴)) |
5 | 4 | elrab3 2909 | . . . . . . . 8 ⊢ (-𝑥 ∈ ℝ → (-𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} ↔ --𝑥 ∈ 𝐴)) |
6 | 2, 5 | syl 14 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ → (-𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} ↔ --𝑥 ∈ 𝐴)) |
7 | recn 7969 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℝ → 𝑥 ∈ ℂ) | |
8 | 7 | negnegd 8284 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ → --𝑥 = 𝑥) |
9 | 8 | eleq1d 2258 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ → (--𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) |
10 | 6, 9 | bitrd 188 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → (-𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} ↔ 𝑥 ∈ 𝐴)) |
11 | 10 | biimprd 158 | . . . . 5 ⊢ (𝑥 ∈ ℝ → (𝑥 ∈ 𝐴 → -𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴})) |
12 | 1, 11 | syli 37 | . . . 4 ⊢ (𝐴 ⊆ ℝ → (𝑥 ∈ 𝐴 → -𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴})) |
13 | elex2 2768 | . . . 4 ⊢ (-𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} → ∃𝑦 𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}) | |
14 | 12, 13 | syl6 33 | . . 3 ⊢ (𝐴 ⊆ ℝ → (𝑥 ∈ 𝐴 → ∃𝑦 𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴})) |
15 | 14 | exlimdv 1830 | . 2 ⊢ (𝐴 ⊆ ℝ → (∃𝑥 𝑥 ∈ 𝐴 → ∃𝑦 𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴})) |
16 | 15 | imp 124 | 1 ⊢ ((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥 ∈ 𝐴) → ∃𝑦 𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∃wex 1503 ∈ wcel 2160 {crab 2472 ⊆ wss 3144 ℝcr 7835 -cneg 8154 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4189 ax-pr 4224 ax-setind 4551 ax-resscn 7928 ax-1cn 7929 ax-icn 7931 ax-addcl 7932 ax-addrcl 7933 ax-mulcl 7934 ax-addcom 7936 ax-addass 7938 ax-distr 7940 ax-i2m1 7941 ax-0id 7944 ax-rnegex 7945 ax-cnre 7947 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-br 4019 df-opab 4080 df-id 4308 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-iota 5193 df-fun 5234 df-fv 5240 df-riota 5848 df-ov 5895 df-oprab 5896 df-mpo 5897 df-sub 8155 df-neg 8156 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |