![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > negm | GIF version |
Description: The image under negation of an inhabited set of reals is inhabited. (Contributed by Jim Kingdon, 10-Apr-2020.) |
Ref | Expression |
---|---|
negm | ⊢ ((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥 ∈ 𝐴) → ∃𝑦 𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3174 | . . . . 5 ⊢ (𝐴 ⊆ ℝ → (𝑥 ∈ 𝐴 → 𝑥 ∈ ℝ)) | |
2 | renegcl 8282 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ → -𝑥 ∈ ℝ) | |
3 | negeq 8214 | . . . . . . . . . 10 ⊢ (𝑧 = -𝑥 → -𝑧 = --𝑥) | |
4 | 3 | eleq1d 2262 | . . . . . . . . 9 ⊢ (𝑧 = -𝑥 → (-𝑧 ∈ 𝐴 ↔ --𝑥 ∈ 𝐴)) |
5 | 4 | elrab3 2918 | . . . . . . . 8 ⊢ (-𝑥 ∈ ℝ → (-𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} ↔ --𝑥 ∈ 𝐴)) |
6 | 2, 5 | syl 14 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ → (-𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} ↔ --𝑥 ∈ 𝐴)) |
7 | recn 8007 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℝ → 𝑥 ∈ ℂ) | |
8 | 7 | negnegd 8323 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ → --𝑥 = 𝑥) |
9 | 8 | eleq1d 2262 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ → (--𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) |
10 | 6, 9 | bitrd 188 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → (-𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} ↔ 𝑥 ∈ 𝐴)) |
11 | 10 | biimprd 158 | . . . . 5 ⊢ (𝑥 ∈ ℝ → (𝑥 ∈ 𝐴 → -𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴})) |
12 | 1, 11 | syli 37 | . . . 4 ⊢ (𝐴 ⊆ ℝ → (𝑥 ∈ 𝐴 → -𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴})) |
13 | elex2 2776 | . . . 4 ⊢ (-𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} → ∃𝑦 𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}) | |
14 | 12, 13 | syl6 33 | . . 3 ⊢ (𝐴 ⊆ ℝ → (𝑥 ∈ 𝐴 → ∃𝑦 𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴})) |
15 | 14 | exlimdv 1830 | . 2 ⊢ (𝐴 ⊆ ℝ → (∃𝑥 𝑥 ∈ 𝐴 → ∃𝑦 𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴})) |
16 | 15 | imp 124 | 1 ⊢ ((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥 ∈ 𝐴) → ∃𝑦 𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∃wex 1503 ∈ wcel 2164 {crab 2476 ⊆ wss 3154 ℝcr 7873 -cneg 8193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-setind 4570 ax-resscn 7966 ax-1cn 7967 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-distr 7978 ax-i2m1 7979 ax-0id 7982 ax-rnegex 7983 ax-cnre 7985 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-iota 5216 df-fun 5257 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-sub 8194 df-neg 8195 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |