ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rereim Unicode version

Theorem rereim 8505
Description: Decomposition of a real number into real part (itself) and imaginary part (zero). (Contributed by Jim Kingdon, 30-Jan-2020.)
Assertion
Ref Expression
rereim  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  A  =  ( B  +  ( _i  x.  C ) ) ) )  -> 
( B  =  A  /\  C  =  0 ) )

Proof of Theorem rereim
StepHypRef Expression
1 simpll 524 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  A  =  ( B  +  ( _i  x.  C ) ) ) )  ->  A  e.  RR )
21recnd 7948 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  A  =  ( B  +  ( _i  x.  C ) ) ) )  ->  A  e.  CC )
3 simplr 525 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  A  =  ( B  +  ( _i  x.  C ) ) ) )  ->  B  e.  RR )
43recnd 7948 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  A  =  ( B  +  ( _i  x.  C ) ) ) )  ->  B  e.  CC )
5 simprr 527 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  A  =  ( B  +  ( _i  x.  C ) ) ) )  ->  A  =  ( B  +  ( _i  x.  C ) ) )
65eqcomd 2176 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  A  =  ( B  +  ( _i  x.  C ) ) ) )  -> 
( B  +  ( _i  x.  C ) )  =  A )
7 ax-icn 7869 . . . . . . . . 9  |-  _i  e.  CC
87a1i 9 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  A  =  ( B  +  ( _i  x.  C ) ) ) )  ->  _i  e.  CC )
9 simprl 526 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  A  =  ( B  +  ( _i  x.  C ) ) ) )  ->  C  e.  RR )
109recnd 7948 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  A  =  ( B  +  ( _i  x.  C ) ) ) )  ->  C  e.  CC )
118, 10mulcld 7940 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  A  =  ( B  +  ( _i  x.  C ) ) ) )  -> 
( _i  x.  C
)  e.  CC )
122, 4, 11subaddd 8248 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  A  =  ( B  +  ( _i  x.  C ) ) ) )  -> 
( ( A  -  B )  =  ( _i  x.  C )  <-> 
( B  +  ( _i  x.  C ) )  =  A ) )
136, 12mpbird 166 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  A  =  ( B  +  ( _i  x.  C ) ) ) )  -> 
( A  -  B
)  =  ( _i  x.  C ) )
141, 3resubcld 8300 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  A  =  ( B  +  ( _i  x.  C ) ) ) )  -> 
( A  -  B
)  e.  RR )
1513, 14eqeltrrd 2248 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  A  =  ( B  +  ( _i  x.  C ) ) ) )  -> 
( _i  x.  C
)  e.  RR )
16 rimul 8504 . . . . . . . 8  |-  ( ( C  e.  RR  /\  ( _i  x.  C
)  e.  RR )  ->  C  =  0 )
179, 15, 16syl2anc 409 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  A  =  ( B  +  ( _i  x.  C ) ) ) )  ->  C  =  0 )
1817oveq2d 5869 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  A  =  ( B  +  ( _i  x.  C ) ) ) )  -> 
( _i  x.  C
)  =  ( _i  x.  0 ) )
197mul01i 8310 . . . . . 6  |-  ( _i  x.  0 )  =  0
2018, 19eqtrdi 2219 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  A  =  ( B  +  ( _i  x.  C ) ) ) )  -> 
( _i  x.  C
)  =  0 )
2113, 20eqtrd 2203 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  A  =  ( B  +  ( _i  x.  C ) ) ) )  -> 
( A  -  B
)  =  0 )
222, 4, 21subeq0d 8238 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  A  =  ( B  +  ( _i  x.  C ) ) ) )  ->  A  =  B )
2322eqcomd 2176 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  A  =  ( B  +  ( _i  x.  C ) ) ) )  ->  B  =  A )
2423, 17jca 304 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  A  =  ( B  +  ( _i  x.  C ) ) ) )  -> 
( B  =  A  /\  C  =  0 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141  (class class class)co 5853   CCcc 7772   RRcr 7773   0cc0 7774   _ici 7776    + caddc 7777    x. cmul 7779    - cmin 8090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-ltxr 7959  df-sub 8092  df-neg 8093  df-reap 8494
This theorem is referenced by:  apreap  8506
  Copyright terms: Public domain W3C validator