ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rereim GIF version

Theorem rereim 8476
Description: Decomposition of a real number into real part (itself) and imaginary part (zero). (Contributed by Jim Kingdon, 30-Jan-2020.)
Assertion
Ref Expression
rereim (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴 = (𝐵 + (i · 𝐶)))) → (𝐵 = 𝐴𝐶 = 0))

Proof of Theorem rereim
StepHypRef Expression
1 simpll 519 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴 = (𝐵 + (i · 𝐶)))) → 𝐴 ∈ ℝ)
21recnd 7919 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴 = (𝐵 + (i · 𝐶)))) → 𝐴 ∈ ℂ)
3 simplr 520 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴 = (𝐵 + (i · 𝐶)))) → 𝐵 ∈ ℝ)
43recnd 7919 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴 = (𝐵 + (i · 𝐶)))) → 𝐵 ∈ ℂ)
5 simprr 522 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴 = (𝐵 + (i · 𝐶)))) → 𝐴 = (𝐵 + (i · 𝐶)))
65eqcomd 2170 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴 = (𝐵 + (i · 𝐶)))) → (𝐵 + (i · 𝐶)) = 𝐴)
7 ax-icn 7840 . . . . . . . . 9 i ∈ ℂ
87a1i 9 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴 = (𝐵 + (i · 𝐶)))) → i ∈ ℂ)
9 simprl 521 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴 = (𝐵 + (i · 𝐶)))) → 𝐶 ∈ ℝ)
109recnd 7919 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴 = (𝐵 + (i · 𝐶)))) → 𝐶 ∈ ℂ)
118, 10mulcld 7911 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴 = (𝐵 + (i · 𝐶)))) → (i · 𝐶) ∈ ℂ)
122, 4, 11subaddd 8219 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴 = (𝐵 + (i · 𝐶)))) → ((𝐴𝐵) = (i · 𝐶) ↔ (𝐵 + (i · 𝐶)) = 𝐴))
136, 12mpbird 166 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴 = (𝐵 + (i · 𝐶)))) → (𝐴𝐵) = (i · 𝐶))
141, 3resubcld 8271 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴 = (𝐵 + (i · 𝐶)))) → (𝐴𝐵) ∈ ℝ)
1513, 14eqeltrrd 2242 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴 = (𝐵 + (i · 𝐶)))) → (i · 𝐶) ∈ ℝ)
16 rimul 8475 . . . . . . . 8 ((𝐶 ∈ ℝ ∧ (i · 𝐶) ∈ ℝ) → 𝐶 = 0)
179, 15, 16syl2anc 409 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴 = (𝐵 + (i · 𝐶)))) → 𝐶 = 0)
1817oveq2d 5853 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴 = (𝐵 + (i · 𝐶)))) → (i · 𝐶) = (i · 0))
197mul01i 8281 . . . . . 6 (i · 0) = 0
2018, 19eqtrdi 2213 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴 = (𝐵 + (i · 𝐶)))) → (i · 𝐶) = 0)
2113, 20eqtrd 2197 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴 = (𝐵 + (i · 𝐶)))) → (𝐴𝐵) = 0)
222, 4, 21subeq0d 8209 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴 = (𝐵 + (i · 𝐶)))) → 𝐴 = 𝐵)
2322eqcomd 2170 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴 = (𝐵 + (i · 𝐶)))) → 𝐵 = 𝐴)
2423, 17jca 304 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴 = (𝐵 + (i · 𝐶)))) → (𝐵 = 𝐴𝐶 = 0))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1342  wcel 2135  (class class class)co 5837  cc 7743  cr 7744  0cc0 7745  ici 7747   + caddc 7748   · cmul 7750  cmin 8061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4095  ax-pow 4148  ax-pr 4182  ax-un 4406  ax-setind 4509  ax-cnex 7836  ax-resscn 7837  ax-1cn 7838  ax-1re 7839  ax-icn 7840  ax-addcl 7841  ax-addrcl 7842  ax-mulcl 7843  ax-mulrcl 7844  ax-addcom 7845  ax-mulcom 7846  ax-addass 7847  ax-mulass 7848  ax-distr 7849  ax-i2m1 7850  ax-0lt1 7851  ax-1rid 7852  ax-0id 7853  ax-rnegex 7854  ax-precex 7855  ax-cnre 7856  ax-pre-ltirr 7857  ax-pre-lttrn 7859  ax-pre-apti 7860  ax-pre-ltadd 7861  ax-pre-mulgt0 7862
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2724  df-sbc 2948  df-dif 3114  df-un 3116  df-in 3118  df-ss 3125  df-pw 3556  df-sn 3577  df-pr 3578  df-op 3580  df-uni 3785  df-br 3978  df-opab 4039  df-id 4266  df-xp 4605  df-rel 4606  df-cnv 4607  df-co 4608  df-dm 4609  df-iota 5148  df-fun 5185  df-fv 5191  df-riota 5793  df-ov 5840  df-oprab 5841  df-mpo 5842  df-pnf 7927  df-mnf 7928  df-ltxr 7930  df-sub 8063  df-neg 8064  df-reap 8465
This theorem is referenced by:  apreap  8477
  Copyright terms: Public domain W3C validator