| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resseqnbasd | GIF version | ||
| Description: The components of an extensible structure except the base set remain unchanged on a structure restriction. (Contributed by Mario Carneiro, 26-Nov-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Revised by AV, 19-Oct-2024.) |
| Ref | Expression |
|---|---|
| resseqnbas.r | ⊢ 𝑅 = (𝑊 ↾s 𝐴) |
| resseqnbas.e | ⊢ 𝐶 = (𝐸‘𝑊) |
| resseqnbasd.f | ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) |
| resseqnbas.n | ⊢ (𝐸‘ndx) ≠ (Base‘ndx) |
| resseqnbasd.w | ⊢ (𝜑 → 𝑊 ∈ 𝑋) |
| resseqnbasd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| resseqnbasd | ⊢ (𝜑 → 𝐶 = (𝐸‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resseqnbas.e | . 2 ⊢ 𝐶 = (𝐸‘𝑊) | |
| 2 | resseqnbas.r | . . . . 5 ⊢ 𝑅 = (𝑊 ↾s 𝐴) | |
| 3 | resseqnbasd.w | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ 𝑋) | |
| 4 | resseqnbasd.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 5 | ressvalsets 13105 | . . . . . 6 ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑉) → (𝑊 ↾s 𝐴) = (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉)) | |
| 6 | 3, 4, 5 | syl2anc 411 | . . . . 5 ⊢ (𝜑 → (𝑊 ↾s 𝐴) = (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉)) |
| 7 | 2, 6 | eqtrid 2274 | . . . 4 ⊢ (𝜑 → 𝑅 = (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉)) |
| 8 | 7 | fveq2d 5633 | . . 3 ⊢ (𝜑 → (𝐸‘𝑅) = (𝐸‘(𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉))) |
| 9 | inex1g 4220 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ (Base‘𝑊)) ∈ V) | |
| 10 | 4, 9 | syl 14 | . . . 4 ⊢ (𝜑 → (𝐴 ∩ (Base‘𝑊)) ∈ V) |
| 11 | resseqnbasd.f | . . . . 5 ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) | |
| 12 | resseqnbas.n | . . . . 5 ⊢ (𝐸‘ndx) ≠ (Base‘ndx) | |
| 13 | basendxnn 13096 | . . . . 5 ⊢ (Base‘ndx) ∈ ℕ | |
| 14 | 11, 12, 13 | setsslnid 13092 | . . . 4 ⊢ ((𝑊 ∈ 𝑋 ∧ (𝐴 ∩ (Base‘𝑊)) ∈ V) → (𝐸‘𝑊) = (𝐸‘(𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉))) |
| 15 | 3, 10, 14 | syl2anc 411 | . . 3 ⊢ (𝜑 → (𝐸‘𝑊) = (𝐸‘(𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉))) |
| 16 | 8, 15 | eqtr4d 2265 | . 2 ⊢ (𝜑 → (𝐸‘𝑅) = (𝐸‘𝑊)) |
| 17 | 1, 16 | eqtr4id 2281 | 1 ⊢ (𝜑 → 𝐶 = (𝐸‘𝑅)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 ≠ wne 2400 Vcvv 2799 ∩ cin 3196 〈cop 3669 ‘cfv 5318 (class class class)co 6007 ℕcn 9118 ndxcnx 13037 sSet csts 13038 Slot cslot 13039 Basecbs 13040 ↾s cress 13041 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1re 8101 ax-addrcl 8104 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-iota 5278 df-fun 5320 df-fv 5326 df-ov 6010 df-oprab 6011 df-mpo 6012 df-inn 9119 df-ndx 13043 df-slot 13044 df-base 13046 df-sets 13047 df-iress 13048 |
| This theorem is referenced by: ressplusgd 13170 ressmulrg 13186 ressscag 13224 ressvscag 13225 ressipg 13226 |
| Copyright terms: Public domain | W3C validator |