| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resseqnbasd | GIF version | ||
| Description: The components of an extensible structure except the base set remain unchanged on a structure restriction. (Contributed by Mario Carneiro, 26-Nov-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Revised by AV, 19-Oct-2024.) |
| Ref | Expression |
|---|---|
| resseqnbas.r | ⊢ 𝑅 = (𝑊 ↾s 𝐴) |
| resseqnbas.e | ⊢ 𝐶 = (𝐸‘𝑊) |
| resseqnbasd.f | ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) |
| resseqnbas.n | ⊢ (𝐸‘ndx) ≠ (Base‘ndx) |
| resseqnbasd.w | ⊢ (𝜑 → 𝑊 ∈ 𝑋) |
| resseqnbasd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| resseqnbasd | ⊢ (𝜑 → 𝐶 = (𝐸‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resseqnbas.e | . 2 ⊢ 𝐶 = (𝐸‘𝑊) | |
| 2 | resseqnbas.r | . . . . 5 ⊢ 𝑅 = (𝑊 ↾s 𝐴) | |
| 3 | resseqnbasd.w | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ 𝑋) | |
| 4 | resseqnbasd.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 5 | ressvalsets 12742 | . . . . . 6 ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑉) → (𝑊 ↾s 𝐴) = (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉)) | |
| 6 | 3, 4, 5 | syl2anc 411 | . . . . 5 ⊢ (𝜑 → (𝑊 ↾s 𝐴) = (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉)) |
| 7 | 2, 6 | eqtrid 2241 | . . . 4 ⊢ (𝜑 → 𝑅 = (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉)) |
| 8 | 7 | fveq2d 5562 | . . 3 ⊢ (𝜑 → (𝐸‘𝑅) = (𝐸‘(𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉))) |
| 9 | inex1g 4169 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ (Base‘𝑊)) ∈ V) | |
| 10 | 4, 9 | syl 14 | . . . 4 ⊢ (𝜑 → (𝐴 ∩ (Base‘𝑊)) ∈ V) |
| 11 | resseqnbasd.f | . . . . 5 ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) | |
| 12 | resseqnbas.n | . . . . 5 ⊢ (𝐸‘ndx) ≠ (Base‘ndx) | |
| 13 | basendxnn 12734 | . . . . 5 ⊢ (Base‘ndx) ∈ ℕ | |
| 14 | 11, 12, 13 | setsslnid 12730 | . . . 4 ⊢ ((𝑊 ∈ 𝑋 ∧ (𝐴 ∩ (Base‘𝑊)) ∈ V) → (𝐸‘𝑊) = (𝐸‘(𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉))) |
| 15 | 3, 10, 14 | syl2anc 411 | . . 3 ⊢ (𝜑 → (𝐸‘𝑊) = (𝐸‘(𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉))) |
| 16 | 8, 15 | eqtr4d 2232 | . 2 ⊢ (𝜑 → (𝐸‘𝑅) = (𝐸‘𝑊)) |
| 17 | 1, 16 | eqtr4id 2248 | 1 ⊢ (𝜑 → 𝐶 = (𝐸‘𝑅)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ≠ wne 2367 Vcvv 2763 ∩ cin 3156 〈cop 3625 ‘cfv 5258 (class class class)co 5922 ℕcn 8990 ndxcnx 12675 sSet csts 12676 Slot cslot 12677 Basecbs 12678 ↾s cress 12679 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-iota 5219 df-fun 5260 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-inn 8991 df-ndx 12681 df-slot 12682 df-base 12684 df-sets 12685 df-iress 12686 |
| This theorem is referenced by: ressplusgd 12806 ressmulrg 12822 ressscag 12860 ressvscag 12861 ressipg 12862 |
| Copyright terms: Public domain | W3C validator |