![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > resseqnbasd | GIF version |
Description: The components of an extensible structure except the base set remain unchanged on a structure restriction. (Contributed by Mario Carneiro, 26-Nov-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Revised by AV, 19-Oct-2024.) |
Ref | Expression |
---|---|
resseqnbas.r | ⊢ 𝑅 = (𝑊 ↾s 𝐴) |
resseqnbas.e | ⊢ 𝐶 = (𝐸‘𝑊) |
resseqnbasd.f | ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) |
resseqnbas.n | ⊢ (𝐸‘ndx) ≠ (Base‘ndx) |
resseqnbasd.w | ⊢ (𝜑 → 𝑊 ∈ 𝑋) |
resseqnbasd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
resseqnbasd | ⊢ (𝜑 → 𝐶 = (𝐸‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resseqnbas.e | . 2 ⊢ 𝐶 = (𝐸‘𝑊) | |
2 | resseqnbas.r | . . . . 5 ⊢ 𝑅 = (𝑊 ↾s 𝐴) | |
3 | resseqnbasd.w | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ 𝑋) | |
4 | resseqnbasd.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
5 | ressvalsets 12685 | . . . . . 6 ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑉) → (𝑊 ↾s 𝐴) = (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉)) | |
6 | 3, 4, 5 | syl2anc 411 | . . . . 5 ⊢ (𝜑 → (𝑊 ↾s 𝐴) = (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉)) |
7 | 2, 6 | eqtrid 2238 | . . . 4 ⊢ (𝜑 → 𝑅 = (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉)) |
8 | 7 | fveq2d 5559 | . . 3 ⊢ (𝜑 → (𝐸‘𝑅) = (𝐸‘(𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉))) |
9 | inex1g 4166 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ (Base‘𝑊)) ∈ V) | |
10 | 4, 9 | syl 14 | . . . 4 ⊢ (𝜑 → (𝐴 ∩ (Base‘𝑊)) ∈ V) |
11 | resseqnbasd.f | . . . . 5 ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) | |
12 | resseqnbas.n | . . . . 5 ⊢ (𝐸‘ndx) ≠ (Base‘ndx) | |
13 | basendxnn 12677 | . . . . 5 ⊢ (Base‘ndx) ∈ ℕ | |
14 | 11, 12, 13 | setsslnid 12673 | . . . 4 ⊢ ((𝑊 ∈ 𝑋 ∧ (𝐴 ∩ (Base‘𝑊)) ∈ V) → (𝐸‘𝑊) = (𝐸‘(𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉))) |
15 | 3, 10, 14 | syl2anc 411 | . . 3 ⊢ (𝜑 → (𝐸‘𝑊) = (𝐸‘(𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉))) |
16 | 8, 15 | eqtr4d 2229 | . 2 ⊢ (𝜑 → (𝐸‘𝑅) = (𝐸‘𝑊)) |
17 | 1, 16 | eqtr4id 2245 | 1 ⊢ (𝜑 → 𝐶 = (𝐸‘𝑅)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 ≠ wne 2364 Vcvv 2760 ∩ cin 3153 〈cop 3622 ‘cfv 5255 (class class class)co 5919 ℕcn 8984 ndxcnx 12618 sSet csts 12619 Slot cslot 12620 Basecbs 12621 ↾s cress 12622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1re 7968 ax-addrcl 7971 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-iota 5216 df-fun 5257 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 df-inn 8985 df-ndx 12624 df-slot 12625 df-base 12627 df-sets 12628 df-iress 12629 |
This theorem is referenced by: ressplusgd 12749 ressmulrg 12765 ressscag 12803 ressvscag 12804 ressipg 12805 |
Copyright terms: Public domain | W3C validator |