ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resseqnbasd GIF version

Theorem resseqnbasd 12751
Description: The components of an extensible structure except the base set remain unchanged on a structure restriction. (Contributed by Mario Carneiro, 26-Nov-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Revised by AV, 19-Oct-2024.)
Hypotheses
Ref Expression
resseqnbas.r 𝑅 = (𝑊s 𝐴)
resseqnbas.e 𝐶 = (𝐸𝑊)
resseqnbasd.f (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
resseqnbas.n (𝐸‘ndx) ≠ (Base‘ndx)
resseqnbasd.w (𝜑𝑊𝑋)
resseqnbasd.a (𝜑𝐴𝑉)
Assertion
Ref Expression
resseqnbasd (𝜑𝐶 = (𝐸𝑅))

Proof of Theorem resseqnbasd
StepHypRef Expression
1 resseqnbas.e . 2 𝐶 = (𝐸𝑊)
2 resseqnbas.r . . . . 5 𝑅 = (𝑊s 𝐴)
3 resseqnbasd.w . . . . . 6 (𝜑𝑊𝑋)
4 resseqnbasd.a . . . . . 6 (𝜑𝐴𝑉)
5 ressvalsets 12742 . . . . . 6 ((𝑊𝑋𝐴𝑉) → (𝑊s 𝐴) = (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩))
63, 4, 5syl2anc 411 . . . . 5 (𝜑 → (𝑊s 𝐴) = (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩))
72, 6eqtrid 2241 . . . 4 (𝜑𝑅 = (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩))
87fveq2d 5562 . . 3 (𝜑 → (𝐸𝑅) = (𝐸‘(𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩)))
9 inex1g 4169 . . . . 5 (𝐴𝑉 → (𝐴 ∩ (Base‘𝑊)) ∈ V)
104, 9syl 14 . . . 4 (𝜑 → (𝐴 ∩ (Base‘𝑊)) ∈ V)
11 resseqnbasd.f . . . . 5 (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
12 resseqnbas.n . . . . 5 (𝐸‘ndx) ≠ (Base‘ndx)
13 basendxnn 12734 . . . . 5 (Base‘ndx) ∈ ℕ
1411, 12, 13setsslnid 12730 . . . 4 ((𝑊𝑋 ∧ (𝐴 ∩ (Base‘𝑊)) ∈ V) → (𝐸𝑊) = (𝐸‘(𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩)))
153, 10, 14syl2anc 411 . . 3 (𝜑 → (𝐸𝑊) = (𝐸‘(𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩)))
168, 15eqtr4d 2232 . 2 (𝜑 → (𝐸𝑅) = (𝐸𝑊))
171, 16eqtr4id 2248 1 (𝜑𝐶 = (𝐸𝑅))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  wne 2367  Vcvv 2763  cin 3156  cop 3625  cfv 5258  (class class class)co 5922  cn 8990  ndxcnx 12675   sSet csts 12676  Slot cslot 12677  Basecbs 12678  s cress 12679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-iota 5219  df-fun 5260  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-inn 8991  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-iress 12686
This theorem is referenced by:  ressplusgd  12806  ressmulrg  12822  ressscag  12860  ressvscag  12861  ressipg  12862
  Copyright terms: Public domain W3C validator