ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resseqnbasd GIF version

Theorem resseqnbasd 13114
Description: The components of an extensible structure except the base set remain unchanged on a structure restriction. (Contributed by Mario Carneiro, 26-Nov-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Revised by AV, 19-Oct-2024.)
Hypotheses
Ref Expression
resseqnbas.r 𝑅 = (𝑊s 𝐴)
resseqnbas.e 𝐶 = (𝐸𝑊)
resseqnbasd.f (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
resseqnbas.n (𝐸‘ndx) ≠ (Base‘ndx)
resseqnbasd.w (𝜑𝑊𝑋)
resseqnbasd.a (𝜑𝐴𝑉)
Assertion
Ref Expression
resseqnbasd (𝜑𝐶 = (𝐸𝑅))

Proof of Theorem resseqnbasd
StepHypRef Expression
1 resseqnbas.e . 2 𝐶 = (𝐸𝑊)
2 resseqnbas.r . . . . 5 𝑅 = (𝑊s 𝐴)
3 resseqnbasd.w . . . . . 6 (𝜑𝑊𝑋)
4 resseqnbasd.a . . . . . 6 (𝜑𝐴𝑉)
5 ressvalsets 13105 . . . . . 6 ((𝑊𝑋𝐴𝑉) → (𝑊s 𝐴) = (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩))
63, 4, 5syl2anc 411 . . . . 5 (𝜑 → (𝑊s 𝐴) = (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩))
72, 6eqtrid 2274 . . . 4 (𝜑𝑅 = (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩))
87fveq2d 5633 . . 3 (𝜑 → (𝐸𝑅) = (𝐸‘(𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩)))
9 inex1g 4220 . . . . 5 (𝐴𝑉 → (𝐴 ∩ (Base‘𝑊)) ∈ V)
104, 9syl 14 . . . 4 (𝜑 → (𝐴 ∩ (Base‘𝑊)) ∈ V)
11 resseqnbasd.f . . . . 5 (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
12 resseqnbas.n . . . . 5 (𝐸‘ndx) ≠ (Base‘ndx)
13 basendxnn 13096 . . . . 5 (Base‘ndx) ∈ ℕ
1411, 12, 13setsslnid 13092 . . . 4 ((𝑊𝑋 ∧ (𝐴 ∩ (Base‘𝑊)) ∈ V) → (𝐸𝑊) = (𝐸‘(𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩)))
153, 10, 14syl2anc 411 . . 3 (𝜑 → (𝐸𝑊) = (𝐸‘(𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩)))
168, 15eqtr4d 2265 . 2 (𝜑 → (𝐸𝑅) = (𝐸𝑊))
171, 16eqtr4id 2281 1 (𝜑𝐶 = (𝐸𝑅))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  wne 2400  Vcvv 2799  cin 3196  cop 3669  cfv 5318  (class class class)co 6007  cn 9118  ndxcnx 13037   sSet csts 13038  Slot cslot 13039  Basecbs 13040  s cress 13041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1re 8101  ax-addrcl 8104
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-iota 5278  df-fun 5320  df-fv 5326  df-ov 6010  df-oprab 6011  df-mpo 6012  df-inn 9119  df-ndx 13043  df-slot 13044  df-base 13046  df-sets 13047  df-iress 13048
This theorem is referenced by:  ressplusgd  13170  ressmulrg  13186  ressscag  13224  ressvscag  13225  ressipg  13226
  Copyright terms: Public domain W3C validator