![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > resseqnbasd | GIF version |
Description: The components of an extensible structure except the base set remain unchanged on a structure restriction. (Contributed by Mario Carneiro, 26-Nov-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Revised by AV, 19-Oct-2024.) |
Ref | Expression |
---|---|
resseqnbas.r | β’ π = (π βΎs π΄) |
resseqnbas.e | β’ πΆ = (πΈβπ) |
resseqnbasd.f | β’ (πΈ = Slot (πΈβndx) β§ (πΈβndx) β β) |
resseqnbas.n | β’ (πΈβndx) β (Baseβndx) |
resseqnbasd.w | β’ (π β π β π) |
resseqnbasd.a | β’ (π β π΄ β π) |
Ref | Expression |
---|---|
resseqnbasd | β’ (π β πΆ = (πΈβπ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resseqnbas.e | . 2 β’ πΆ = (πΈβπ) | |
2 | resseqnbas.r | . . . . 5 β’ π = (π βΎs π΄) | |
3 | resseqnbasd.w | . . . . . 6 β’ (π β π β π) | |
4 | resseqnbasd.a | . . . . . 6 β’ (π β π΄ β π) | |
5 | ressvalsets 12538 | . . . . . 6 β’ ((π β π β§ π΄ β π) β (π βΎs π΄) = (π sSet β¨(Baseβndx), (π΄ β© (Baseβπ))β©)) | |
6 | 3, 4, 5 | syl2anc 411 | . . . . 5 β’ (π β (π βΎs π΄) = (π sSet β¨(Baseβndx), (π΄ β© (Baseβπ))β©)) |
7 | 2, 6 | eqtrid 2232 | . . . 4 β’ (π β π = (π sSet β¨(Baseβndx), (π΄ β© (Baseβπ))β©)) |
8 | 7 | fveq2d 5531 | . . 3 β’ (π β (πΈβπ ) = (πΈβ(π sSet β¨(Baseβndx), (π΄ β© (Baseβπ))β©))) |
9 | inex1g 4151 | . . . . 5 β’ (π΄ β π β (π΄ β© (Baseβπ)) β V) | |
10 | 4, 9 | syl 14 | . . . 4 β’ (π β (π΄ β© (Baseβπ)) β V) |
11 | resseqnbasd.f | . . . . 5 β’ (πΈ = Slot (πΈβndx) β§ (πΈβndx) β β) | |
12 | resseqnbas.n | . . . . 5 β’ (πΈβndx) β (Baseβndx) | |
13 | basendxnn 12532 | . . . . 5 β’ (Baseβndx) β β | |
14 | 11, 12, 13 | setsslnid 12528 | . . . 4 β’ ((π β π β§ (π΄ β© (Baseβπ)) β V) β (πΈβπ) = (πΈβ(π sSet β¨(Baseβndx), (π΄ β© (Baseβπ))β©))) |
15 | 3, 10, 14 | syl2anc 411 | . . 3 β’ (π β (πΈβπ) = (πΈβ(π sSet β¨(Baseβndx), (π΄ β© (Baseβπ))β©))) |
16 | 8, 15 | eqtr4d 2223 | . 2 β’ (π β (πΈβπ ) = (πΈβπ)) |
17 | 1, 16 | eqtr4id 2239 | 1 β’ (π β πΆ = (πΈβπ )) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β§ wa 104 = wceq 1363 β wcel 2158 β wne 2357 Vcvv 2749 β© cin 3140 β¨cop 3607 βcfv 5228 (class class class)co 5888 βcn 8933 ndxcnx 12473 sSet csts 12474 Slot cslot 12475 Basecbs 12476 βΎs cress 12477 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-cnex 7916 ax-resscn 7917 ax-1re 7919 ax-addrcl 7922 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-ral 2470 df-rex 2471 df-rab 2474 df-v 2751 df-sbc 2975 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-nul 3435 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-br 4016 df-opab 4077 df-mpt 4078 df-id 4305 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-iota 5190 df-fun 5230 df-fv 5236 df-ov 5891 df-oprab 5892 df-mpo 5893 df-inn 8934 df-ndx 12479 df-slot 12480 df-base 12482 df-sets 12483 df-iress 12484 |
This theorem is referenced by: ressplusgd 12602 ressmulrg 12618 ressscag 12656 ressvscag 12657 ressipg 12658 |
Copyright terms: Public domain | W3C validator |