| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resseqnbasd | GIF version | ||
| Description: The components of an extensible structure except the base set remain unchanged on a structure restriction. (Contributed by Mario Carneiro, 26-Nov-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Revised by AV, 19-Oct-2024.) |
| Ref | Expression |
|---|---|
| resseqnbas.r | ⊢ 𝑅 = (𝑊 ↾s 𝐴) |
| resseqnbas.e | ⊢ 𝐶 = (𝐸‘𝑊) |
| resseqnbasd.f | ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) |
| resseqnbas.n | ⊢ (𝐸‘ndx) ≠ (Base‘ndx) |
| resseqnbasd.w | ⊢ (𝜑 → 𝑊 ∈ 𝑋) |
| resseqnbasd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| resseqnbasd | ⊢ (𝜑 → 𝐶 = (𝐸‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resseqnbas.e | . 2 ⊢ 𝐶 = (𝐸‘𝑊) | |
| 2 | resseqnbas.r | . . . . 5 ⊢ 𝑅 = (𝑊 ↾s 𝐴) | |
| 3 | resseqnbasd.w | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ 𝑋) | |
| 4 | resseqnbasd.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 5 | ressvalsets 13063 | . . . . . 6 ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑉) → (𝑊 ↾s 𝐴) = (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉)) | |
| 6 | 3, 4, 5 | syl2anc 411 | . . . . 5 ⊢ (𝜑 → (𝑊 ↾s 𝐴) = (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉)) |
| 7 | 2, 6 | eqtrid 2254 | . . . 4 ⊢ (𝜑 → 𝑅 = (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉)) |
| 8 | 7 | fveq2d 5607 | . . 3 ⊢ (𝜑 → (𝐸‘𝑅) = (𝐸‘(𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉))) |
| 9 | inex1g 4199 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ (Base‘𝑊)) ∈ V) | |
| 10 | 4, 9 | syl 14 | . . . 4 ⊢ (𝜑 → (𝐴 ∩ (Base‘𝑊)) ∈ V) |
| 11 | resseqnbasd.f | . . . . 5 ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) | |
| 12 | resseqnbas.n | . . . . 5 ⊢ (𝐸‘ndx) ≠ (Base‘ndx) | |
| 13 | basendxnn 13054 | . . . . 5 ⊢ (Base‘ndx) ∈ ℕ | |
| 14 | 11, 12, 13 | setsslnid 13050 | . . . 4 ⊢ ((𝑊 ∈ 𝑋 ∧ (𝐴 ∩ (Base‘𝑊)) ∈ V) → (𝐸‘𝑊) = (𝐸‘(𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉))) |
| 15 | 3, 10, 14 | syl2anc 411 | . . 3 ⊢ (𝜑 → (𝐸‘𝑊) = (𝐸‘(𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉))) |
| 16 | 8, 15 | eqtr4d 2245 | . 2 ⊢ (𝜑 → (𝐸‘𝑅) = (𝐸‘𝑊)) |
| 17 | 1, 16 | eqtr4id 2261 | 1 ⊢ (𝜑 → 𝐶 = (𝐸‘𝑅)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1375 ∈ wcel 2180 ≠ wne 2380 Vcvv 2779 ∩ cin 3176 〈cop 3649 ‘cfv 5294 (class class class)co 5974 ℕcn 9078 ndxcnx 12995 sSet csts 12996 Slot cslot 12997 Basecbs 12998 ↾s cress 12999 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-1re 8061 ax-addrcl 8064 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-rab 2497 df-v 2781 df-sbc 3009 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-iota 5254 df-fun 5296 df-fv 5302 df-ov 5977 df-oprab 5978 df-mpo 5979 df-inn 9079 df-ndx 13001 df-slot 13002 df-base 13004 df-sets 13005 df-iress 13006 |
| This theorem is referenced by: ressplusgd 13128 ressmulrg 13144 ressscag 13182 ressvscag 13183 ressipg 13184 |
| Copyright terms: Public domain | W3C validator |