ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resseqnbasd GIF version

Theorem resseqnbasd 12526
Description: The components of an extensible structure except the base set remain unchanged on a structure restriction. (Contributed by Mario Carneiro, 26-Nov-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Revised by AV, 19-Oct-2024.)
Hypotheses
Ref Expression
resseqnbas.r 𝑅 = (𝑊s 𝐴)
resseqnbas.e 𝐶 = (𝐸𝑊)
resseqnbasd.f (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
resseqnbas.n (𝐸‘ndx) ≠ (Base‘ndx)
resseqnbasd.w (𝜑𝑊𝑋)
resseqnbasd.a (𝜑𝐴𝑉)
Assertion
Ref Expression
resseqnbasd (𝜑𝐶 = (𝐸𝑅))

Proof of Theorem resseqnbasd
StepHypRef Expression
1 resseqnbas.e . 2 𝐶 = (𝐸𝑊)
2 resseqnbas.r . . . . 5 𝑅 = (𝑊s 𝐴)
3 resseqnbasd.w . . . . . 6 (𝜑𝑊𝑋)
4 resseqnbasd.a . . . . . 6 (𝜑𝐴𝑉)
5 ressvalsets 12518 . . . . . 6 ((𝑊𝑋𝐴𝑉) → (𝑊s 𝐴) = (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩))
63, 4, 5syl2anc 411 . . . . 5 (𝜑 → (𝑊s 𝐴) = (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩))
72, 6eqtrid 2222 . . . 4 (𝜑𝑅 = (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩))
87fveq2d 5519 . . 3 (𝜑 → (𝐸𝑅) = (𝐸‘(𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩)))
9 inex1g 4139 . . . . 5 (𝐴𝑉 → (𝐴 ∩ (Base‘𝑊)) ∈ V)
104, 9syl 14 . . . 4 (𝜑 → (𝐴 ∩ (Base‘𝑊)) ∈ V)
11 resseqnbasd.f . . . . 5 (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
12 resseqnbas.n . . . . 5 (𝐸‘ndx) ≠ (Base‘ndx)
13 basendxnn 12512 . . . . 5 (Base‘ndx) ∈ ℕ
1411, 12, 13setsslnid 12508 . . . 4 ((𝑊𝑋 ∧ (𝐴 ∩ (Base‘𝑊)) ∈ V) → (𝐸𝑊) = (𝐸‘(𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩)))
153, 10, 14syl2anc 411 . . 3 (𝜑 → (𝐸𝑊) = (𝐸‘(𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩)))
168, 15eqtr4d 2213 . 2 (𝜑 → (𝐸𝑅) = (𝐸𝑊))
171, 16eqtr4id 2229 1 (𝜑𝐶 = (𝐸𝑅))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  wne 2347  Vcvv 2737  cin 3128  cop 3595  cfv 5216  (class class class)co 5874  cn 8917  ndxcnx 12453   sSet csts 12454  Slot cslot 12455  Basecbs 12456  s cress 12457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-cnex 7901  ax-resscn 7902  ax-1re 7904  ax-addrcl 7907
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-br 4004  df-opab 4065  df-mpt 4066  df-id 4293  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-iota 5178  df-fun 5218  df-fv 5224  df-ov 5877  df-oprab 5878  df-mpo 5879  df-inn 8918  df-ndx 12459  df-slot 12460  df-base 12462  df-sets 12463  df-iress 12464
This theorem is referenced by:  ressplusgd  12581  ressmulrg  12597
  Copyright terms: Public domain W3C validator