ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resseqnbasd GIF version

Theorem resseqnbasd 13072
Description: The components of an extensible structure except the base set remain unchanged on a structure restriction. (Contributed by Mario Carneiro, 26-Nov-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Revised by AV, 19-Oct-2024.)
Hypotheses
Ref Expression
resseqnbas.r 𝑅 = (𝑊s 𝐴)
resseqnbas.e 𝐶 = (𝐸𝑊)
resseqnbasd.f (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
resseqnbas.n (𝐸‘ndx) ≠ (Base‘ndx)
resseqnbasd.w (𝜑𝑊𝑋)
resseqnbasd.a (𝜑𝐴𝑉)
Assertion
Ref Expression
resseqnbasd (𝜑𝐶 = (𝐸𝑅))

Proof of Theorem resseqnbasd
StepHypRef Expression
1 resseqnbas.e . 2 𝐶 = (𝐸𝑊)
2 resseqnbas.r . . . . 5 𝑅 = (𝑊s 𝐴)
3 resseqnbasd.w . . . . . 6 (𝜑𝑊𝑋)
4 resseqnbasd.a . . . . . 6 (𝜑𝐴𝑉)
5 ressvalsets 13063 . . . . . 6 ((𝑊𝑋𝐴𝑉) → (𝑊s 𝐴) = (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩))
63, 4, 5syl2anc 411 . . . . 5 (𝜑 → (𝑊s 𝐴) = (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩))
72, 6eqtrid 2254 . . . 4 (𝜑𝑅 = (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩))
87fveq2d 5607 . . 3 (𝜑 → (𝐸𝑅) = (𝐸‘(𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩)))
9 inex1g 4199 . . . . 5 (𝐴𝑉 → (𝐴 ∩ (Base‘𝑊)) ∈ V)
104, 9syl 14 . . . 4 (𝜑 → (𝐴 ∩ (Base‘𝑊)) ∈ V)
11 resseqnbasd.f . . . . 5 (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
12 resseqnbas.n . . . . 5 (𝐸‘ndx) ≠ (Base‘ndx)
13 basendxnn 13054 . . . . 5 (Base‘ndx) ∈ ℕ
1411, 12, 13setsslnid 13050 . . . 4 ((𝑊𝑋 ∧ (𝐴 ∩ (Base‘𝑊)) ∈ V) → (𝐸𝑊) = (𝐸‘(𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩)))
153, 10, 14syl2anc 411 . . 3 (𝜑 → (𝐸𝑊) = (𝐸‘(𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩)))
168, 15eqtr4d 2245 . 2 (𝜑 → (𝐸𝑅) = (𝐸𝑊))
171, 16eqtr4id 2261 1 (𝜑𝐶 = (𝐸𝑅))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1375  wcel 2180  wne 2380  Vcvv 2779  cin 3176  cop 3649  cfv 5294  (class class class)co 5974  cn 9078  ndxcnx 12995   sSet csts 12996  Slot cslot 12997  Basecbs 12998  s cress 12999
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1re 8061  ax-addrcl 8064
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-rab 2497  df-v 2781  df-sbc 3009  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-iota 5254  df-fun 5296  df-fv 5302  df-ov 5977  df-oprab 5978  df-mpo 5979  df-inn 9079  df-ndx 13001  df-slot 13002  df-base 13004  df-sets 13005  df-iress 13006
This theorem is referenced by:  ressplusgd  13128  ressmulrg  13144  ressscag  13182  ressvscag  13183  ressipg  13184
  Copyright terms: Public domain W3C validator