![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > resseqnbasd | GIF version |
Description: The components of an extensible structure except the base set remain unchanged on a structure restriction. (Contributed by Mario Carneiro, 26-Nov-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Revised by AV, 19-Oct-2024.) |
Ref | Expression |
---|---|
resseqnbas.r | β’ π = (π βΎs π΄) |
resseqnbas.e | β’ πΆ = (πΈβπ) |
resseqnbasd.f | β’ (πΈ = Slot (πΈβndx) β§ (πΈβndx) β β) |
resseqnbas.n | β’ (πΈβndx) β (Baseβndx) |
resseqnbasd.w | β’ (π β π β π) |
resseqnbasd.a | β’ (π β π΄ β π) |
Ref | Expression |
---|---|
resseqnbasd | β’ (π β πΆ = (πΈβπ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resseqnbas.e | . 2 β’ πΆ = (πΈβπ) | |
2 | resseqnbas.r | . . . . 5 β’ π = (π βΎs π΄) | |
3 | resseqnbasd.w | . . . . . 6 β’ (π β π β π) | |
4 | resseqnbasd.a | . . . . . 6 β’ (π β π΄ β π) | |
5 | ressvalsets 12549 | . . . . . 6 β’ ((π β π β§ π΄ β π) β (π βΎs π΄) = (π sSet β¨(Baseβndx), (π΄ β© (Baseβπ))β©)) | |
6 | 3, 4, 5 | syl2anc 411 | . . . . 5 β’ (π β (π βΎs π΄) = (π sSet β¨(Baseβndx), (π΄ β© (Baseβπ))β©)) |
7 | 2, 6 | eqtrid 2234 | . . . 4 β’ (π β π = (π sSet β¨(Baseβndx), (π΄ β© (Baseβπ))β©)) |
8 | 7 | fveq2d 5535 | . . 3 β’ (π β (πΈβπ ) = (πΈβ(π sSet β¨(Baseβndx), (π΄ β© (Baseβπ))β©))) |
9 | inex1g 4154 | . . . . 5 β’ (π΄ β π β (π΄ β© (Baseβπ)) β V) | |
10 | 4, 9 | syl 14 | . . . 4 β’ (π β (π΄ β© (Baseβπ)) β V) |
11 | resseqnbasd.f | . . . . 5 β’ (πΈ = Slot (πΈβndx) β§ (πΈβndx) β β) | |
12 | resseqnbas.n | . . . . 5 β’ (πΈβndx) β (Baseβndx) | |
13 | basendxnn 12543 | . . . . 5 β’ (Baseβndx) β β | |
14 | 11, 12, 13 | setsslnid 12539 | . . . 4 β’ ((π β π β§ (π΄ β© (Baseβπ)) β V) β (πΈβπ) = (πΈβ(π sSet β¨(Baseβndx), (π΄ β© (Baseβπ))β©))) |
15 | 3, 10, 14 | syl2anc 411 | . . 3 β’ (π β (πΈβπ) = (πΈβ(π sSet β¨(Baseβndx), (π΄ β© (Baseβπ))β©))) |
16 | 8, 15 | eqtr4d 2225 | . 2 β’ (π β (πΈβπ ) = (πΈβπ)) |
17 | 1, 16 | eqtr4id 2241 | 1 β’ (π β πΆ = (πΈβπ )) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β§ wa 104 = wceq 1364 β wcel 2160 β wne 2360 Vcvv 2752 β© cin 3143 β¨cop 3610 βcfv 5232 (class class class)co 5892 βcn 8939 ndxcnx 12484 sSet csts 12485 Slot cslot 12486 Basecbs 12487 βΎs cress 12488 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4189 ax-pr 4224 ax-un 4448 ax-setind 4551 ax-cnex 7922 ax-resscn 7923 ax-1re 7925 ax-addrcl 7928 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-ral 2473 df-rex 2474 df-rab 2477 df-v 2754 df-sbc 2978 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4308 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-rn 4652 df-res 4653 df-iota 5193 df-fun 5234 df-fv 5240 df-ov 5895 df-oprab 5896 df-mpo 5897 df-inn 8940 df-ndx 12490 df-slot 12491 df-base 12493 df-sets 12494 df-iress 12495 |
This theorem is referenced by: ressplusgd 12613 ressmulrg 12629 ressscag 12667 ressvscag 12668 ressipg 12669 |
Copyright terms: Public domain | W3C validator |