| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eucalgf | Unicode version | ||
| Description: Domain and codomain of
the step function |
| Ref | Expression |
|---|---|
| eucalgval.1 |
|
| Ref | Expression |
|---|---|
| eucalgf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnne0 9046 |
. . . . . . . . 9
| |
| 2 | 1 | adantl 277 |
. . . . . . . 8
|
| 3 | 2 | neneqd 2396 |
. . . . . . 7
|
| 4 | 3 | iffalsed 3580 |
. . . . . 6
|
| 5 | nnnn0 9284 |
. . . . . . . 8
| |
| 6 | 5 | adantl 277 |
. . . . . . 7
|
| 7 | nn0z 9374 |
. . . . . . . 8
| |
| 8 | zmodcl 10470 |
. . . . . . . 8
| |
| 9 | 7, 8 | sylan 283 |
. . . . . . 7
|
| 10 | opelxpi 4705 |
. . . . . . 7
| |
| 11 | 6, 9, 10 | syl2anc 411 |
. . . . . 6
|
| 12 | 4, 11 | eqeltrd 2281 |
. . . . 5
|
| 13 | 12 | adantlr 477 |
. . . 4
|
| 14 | iftrue 3575 |
. . . . . 6
| |
| 15 | 14 | adantl 277 |
. . . . 5
|
| 16 | opelxpi 4705 |
. . . . . 6
| |
| 17 | 16 | adantr 276 |
. . . . 5
|
| 18 | 15, 17 | eqeltrd 2281 |
. . . 4
|
| 19 | simpr 110 |
. . . . 5
| |
| 20 | elnn0 9279 |
. . . . 5
| |
| 21 | 19, 20 | sylib 122 |
. . . 4
|
| 22 | 13, 18, 21 | mpjaodan 799 |
. . 3
|
| 23 | 22 | rgen2a 2559 |
. 2
|
| 24 | eucalgval.1 |
. . 3
| |
| 25 | 24 | fmpo 6277 |
. 2
|
| 26 | 23, 25 | mpbi 145 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-cnex 7998 ax-resscn 7999 ax-1cn 8000 ax-1re 8001 ax-icn 8002 ax-addcl 8003 ax-addrcl 8004 ax-mulcl 8005 ax-mulrcl 8006 ax-addcom 8007 ax-mulcom 8008 ax-addass 8009 ax-mulass 8010 ax-distr 8011 ax-i2m1 8012 ax-0lt1 8013 ax-1rid 8014 ax-0id 8015 ax-rnegex 8016 ax-precex 8017 ax-cnre 8018 ax-pre-ltirr 8019 ax-pre-ltwlin 8020 ax-pre-lttrn 8021 ax-pre-apti 8022 ax-pre-ltadd 8023 ax-pre-mulgt0 8024 ax-pre-mulext 8025 ax-arch 8026 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4338 df-po 4341 df-iso 4342 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-fv 5276 df-riota 5889 df-ov 5937 df-oprab 5938 df-mpo 5939 df-1st 6216 df-2nd 6217 df-pnf 8091 df-mnf 8092 df-xr 8093 df-ltxr 8094 df-le 8095 df-sub 8227 df-neg 8228 df-reap 8630 df-ap 8637 df-div 8728 df-inn 9019 df-n0 9278 df-z 9355 df-q 9723 df-rp 9758 df-fl 10394 df-mod 10449 |
| This theorem is referenced by: eucalgcvga 12299 eucalg 12300 |
| Copyright terms: Public domain | W3C validator |