ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eucalgf Unicode version

Theorem eucalgf 11311
Description: Domain and codomain of the step function  E for Euclid's Algorithm. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 28-May-2014.)
Hypothesis
Ref Expression
eucalgval.1  |-  E  =  ( x  e.  NN0 ,  y  e.  NN0  |->  if ( y  =  0 , 
<. x ,  y >. ,  <. y ,  ( x  mod  y )
>. ) )
Assertion
Ref Expression
eucalgf  |-  E :
( NN0  X.  NN0 ) --> ( NN0  X.  NN0 )
Distinct variable group:    x, y
Allowed substitution hints:    E( x, y)

Proof of Theorem eucalgf
StepHypRef Expression
1 nnne0 8448 . . . . . . . . 9  |-  ( y  e.  NN  ->  y  =/=  0 )
21adantl 271 . . . . . . . 8  |-  ( ( x  e.  NN0  /\  y  e.  NN )  ->  y  =/=  0 )
32neneqd 2276 . . . . . . 7  |-  ( ( x  e.  NN0  /\  y  e.  NN )  ->  -.  y  =  0 )
43iffalsed 3403 . . . . . 6  |-  ( ( x  e.  NN0  /\  y  e.  NN )  ->  if ( y  =  0 ,  <. x ,  y >. ,  <. y ,  ( x  mod  y ) >. )  =  <. y ,  ( x  mod  y )
>. )
5 nnnn0 8678 . . . . . . . 8  |-  ( y  e.  NN  ->  y  e.  NN0 )
65adantl 271 . . . . . . 7  |-  ( ( x  e.  NN0  /\  y  e.  NN )  ->  y  e.  NN0 )
7 nn0z 8768 . . . . . . . 8  |-  ( x  e.  NN0  ->  x  e.  ZZ )
8 zmodcl 9747 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  ( x  mod  y
)  e.  NN0 )
97, 8sylan 277 . . . . . . 7  |-  ( ( x  e.  NN0  /\  y  e.  NN )  ->  ( x  mod  y
)  e.  NN0 )
10 opelxpi 4469 . . . . . . 7  |-  ( ( y  e.  NN0  /\  ( x  mod  y )  e.  NN0 )  ->  <. y ,  ( x  mod  y ) >.  e.  ( NN0  X.  NN0 ) )
116, 9, 10syl2anc 403 . . . . . 6  |-  ( ( x  e.  NN0  /\  y  e.  NN )  -> 
<. y ,  ( x  mod  y ) >.  e.  ( NN0  X.  NN0 ) )
124, 11eqeltrd 2164 . . . . 5  |-  ( ( x  e.  NN0  /\  y  e.  NN )  ->  if ( y  =  0 ,  <. x ,  y >. ,  <. y ,  ( x  mod  y ) >. )  e.  ( NN0  X.  NN0 ) )
1312adantlr 461 . . . 4  |-  ( ( ( x  e.  NN0  /\  y  e.  NN0 )  /\  y  e.  NN )  ->  if ( y  =  0 ,  <. x ,  y >. ,  <. y ,  ( x  mod  y ) >. )  e.  ( NN0  X.  NN0 ) )
14 iftrue 3398 . . . . . 6  |-  ( y  =  0  ->  if ( y  =  0 ,  <. x ,  y
>. ,  <. y ,  ( x  mod  y
) >. )  =  <. x ,  y >. )
1514adantl 271 . . . . 5  |-  ( ( ( x  e.  NN0  /\  y  e.  NN0 )  /\  y  =  0
)  ->  if (
y  =  0 , 
<. x ,  y >. ,  <. y ,  ( x  mod  y )
>. )  =  <. x ,  y >. )
16 opelxpi 4469 . . . . . 6  |-  ( ( x  e.  NN0  /\  y  e.  NN0 )  ->  <. x ,  y >.  e.  ( NN0  X.  NN0 ) )
1716adantr 270 . . . . 5  |-  ( ( ( x  e.  NN0  /\  y  e.  NN0 )  /\  y  =  0
)  ->  <. x ,  y >.  e.  ( NN0  X.  NN0 ) )
1815, 17eqeltrd 2164 . . . 4  |-  ( ( ( x  e.  NN0  /\  y  e.  NN0 )  /\  y  =  0
)  ->  if (
y  =  0 , 
<. x ,  y >. ,  <. y ,  ( x  mod  y )
>. )  e.  ( NN0  X.  NN0 ) )
19 simpr 108 . . . . 5  |-  ( ( x  e.  NN0  /\  y  e.  NN0 )  -> 
y  e.  NN0 )
20 elnn0 8673 . . . . 5  |-  ( y  e.  NN0  <->  ( y  e.  NN  \/  y  =  0 ) )
2119, 20sylib 120 . . . 4  |-  ( ( x  e.  NN0  /\  y  e.  NN0 )  -> 
( y  e.  NN  \/  y  =  0
) )
2213, 18, 21mpjaodan 747 . . 3  |-  ( ( x  e.  NN0  /\  y  e.  NN0 )  ->  if ( y  =  0 ,  <. x ,  y
>. ,  <. y ,  ( x  mod  y
) >. )  e.  ( NN0  X.  NN0 )
)
2322rgen2a 2429 . 2  |-  A. x  e.  NN0  A. y  e. 
NN0  if ( y  =  0 ,  <. x ,  y >. ,  <. y ,  ( x  mod  y ) >. )  e.  ( NN0  X.  NN0 )
24 eucalgval.1 . . 3  |-  E  =  ( x  e.  NN0 ,  y  e.  NN0  |->  if ( y  =  0 , 
<. x ,  y >. ,  <. y ,  ( x  mod  y )
>. ) )
2524fmpt2 5971 . 2  |-  ( A. x  e.  NN0  A. y  e.  NN0  if ( y  =  0 ,  <. x ,  y >. ,  <. y ,  ( x  mod  y ) >. )  e.  ( NN0  X.  NN0 ) 
<->  E : ( NN0 
X.  NN0 ) --> ( NN0 
X.  NN0 ) )
2623, 25mpbi 143 1  |-  E :
( NN0  X.  NN0 ) --> ( NN0  X.  NN0 )
Colors of variables: wff set class
Syntax hints:    /\ wa 102    \/ wo 664    = wceq 1289    e. wcel 1438    =/= wne 2255   A.wral 2359   ifcif 3393   <.cop 3449    X. cxp 4436   -->wf 5011  (class class class)co 5652    |-> cmpt2 5654   0cc0 7348   NNcn 8420   NN0cn0 8671   ZZcz 8748    mod cmo 9725
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353  ax-cnex 7434  ax-resscn 7435  ax-1cn 7436  ax-1re 7437  ax-icn 7438  ax-addcl 7439  ax-addrcl 7440  ax-mulcl 7441  ax-mulrcl 7442  ax-addcom 7443  ax-mulcom 7444  ax-addass 7445  ax-mulass 7446  ax-distr 7447  ax-i2m1 7448  ax-0lt1 7449  ax-1rid 7450  ax-0id 7451  ax-rnegex 7452  ax-precex 7453  ax-cnre 7454  ax-pre-ltirr 7455  ax-pre-ltwlin 7456  ax-pre-lttrn 7457  ax-pre-apti 7458  ax-pre-ltadd 7459  ax-pre-mulgt0 7460  ax-pre-mulext 7461  ax-arch 7462
This theorem depends on definitions:  df-bi 115  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rmo 2367  df-rab 2368  df-v 2621  df-sbc 2841  df-csb 2934  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-if 3394  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-int 3689  df-iun 3732  df-br 3846  df-opab 3900  df-mpt 3901  df-id 4120  df-po 4123  df-iso 4124  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-fv 5023  df-riota 5608  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-1st 5911  df-2nd 5912  df-pnf 7522  df-mnf 7523  df-xr 7524  df-ltxr 7525  df-le 7526  df-sub 7653  df-neg 7654  df-reap 8050  df-ap 8057  df-div 8138  df-inn 8421  df-n0 8672  df-z 8749  df-q 9103  df-rp 9133  df-fl 9673  df-mod 9726
This theorem is referenced by:  eucialgcvga  11314  eucialg  11315
  Copyright terms: Public domain W3C validator