ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eucalgf Unicode version

Theorem eucalgf 11932
Description: Domain and codomain of the step function  E for Euclid's Algorithm. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 28-May-2014.)
Hypothesis
Ref Expression
eucalgval.1  |-  E  =  ( x  e.  NN0 ,  y  e.  NN0  |->  if ( y  =  0 , 
<. x ,  y >. ,  <. y ,  ( x  mod  y )
>. ) )
Assertion
Ref Expression
eucalgf  |-  E :
( NN0  X.  NN0 ) --> ( NN0  X.  NN0 )
Distinct variable group:    x, y
Allowed substitution hints:    E( x, y)

Proof of Theorem eucalgf
StepHypRef Expression
1 nnne0 8861 . . . . . . . . 9  |-  ( y  e.  NN  ->  y  =/=  0 )
21adantl 275 . . . . . . . 8  |-  ( ( x  e.  NN0  /\  y  e.  NN )  ->  y  =/=  0 )
32neneqd 2348 . . . . . . 7  |-  ( ( x  e.  NN0  /\  y  e.  NN )  ->  -.  y  =  0 )
43iffalsed 3515 . . . . . 6  |-  ( ( x  e.  NN0  /\  y  e.  NN )  ->  if ( y  =  0 ,  <. x ,  y >. ,  <. y ,  ( x  mod  y ) >. )  =  <. y ,  ( x  mod  y )
>. )
5 nnnn0 9097 . . . . . . . 8  |-  ( y  e.  NN  ->  y  e.  NN0 )
65adantl 275 . . . . . . 7  |-  ( ( x  e.  NN0  /\  y  e.  NN )  ->  y  e.  NN0 )
7 nn0z 9187 . . . . . . . 8  |-  ( x  e.  NN0  ->  x  e.  ZZ )
8 zmodcl 10243 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  ( x  mod  y
)  e.  NN0 )
97, 8sylan 281 . . . . . . 7  |-  ( ( x  e.  NN0  /\  y  e.  NN )  ->  ( x  mod  y
)  e.  NN0 )
10 opelxpi 4618 . . . . . . 7  |-  ( ( y  e.  NN0  /\  ( x  mod  y )  e.  NN0 )  ->  <. y ,  ( x  mod  y ) >.  e.  ( NN0  X.  NN0 ) )
116, 9, 10syl2anc 409 . . . . . 6  |-  ( ( x  e.  NN0  /\  y  e.  NN )  -> 
<. y ,  ( x  mod  y ) >.  e.  ( NN0  X.  NN0 ) )
124, 11eqeltrd 2234 . . . . 5  |-  ( ( x  e.  NN0  /\  y  e.  NN )  ->  if ( y  =  0 ,  <. x ,  y >. ,  <. y ,  ( x  mod  y ) >. )  e.  ( NN0  X.  NN0 ) )
1312adantlr 469 . . . 4  |-  ( ( ( x  e.  NN0  /\  y  e.  NN0 )  /\  y  e.  NN )  ->  if ( y  =  0 ,  <. x ,  y >. ,  <. y ,  ( x  mod  y ) >. )  e.  ( NN0  X.  NN0 ) )
14 iftrue 3510 . . . . . 6  |-  ( y  =  0  ->  if ( y  =  0 ,  <. x ,  y
>. ,  <. y ,  ( x  mod  y
) >. )  =  <. x ,  y >. )
1514adantl 275 . . . . 5  |-  ( ( ( x  e.  NN0  /\  y  e.  NN0 )  /\  y  =  0
)  ->  if (
y  =  0 , 
<. x ,  y >. ,  <. y ,  ( x  mod  y )
>. )  =  <. x ,  y >. )
16 opelxpi 4618 . . . . . 6  |-  ( ( x  e.  NN0  /\  y  e.  NN0 )  ->  <. x ,  y >.  e.  ( NN0  X.  NN0 ) )
1716adantr 274 . . . . 5  |-  ( ( ( x  e.  NN0  /\  y  e.  NN0 )  /\  y  =  0
)  ->  <. x ,  y >.  e.  ( NN0  X.  NN0 ) )
1815, 17eqeltrd 2234 . . . 4  |-  ( ( ( x  e.  NN0  /\  y  e.  NN0 )  /\  y  =  0
)  ->  if (
y  =  0 , 
<. x ,  y >. ,  <. y ,  ( x  mod  y )
>. )  e.  ( NN0  X.  NN0 ) )
19 simpr 109 . . . . 5  |-  ( ( x  e.  NN0  /\  y  e.  NN0 )  -> 
y  e.  NN0 )
20 elnn0 9092 . . . . 5  |-  ( y  e.  NN0  <->  ( y  e.  NN  \/  y  =  0 ) )
2119, 20sylib 121 . . . 4  |-  ( ( x  e.  NN0  /\  y  e.  NN0 )  -> 
( y  e.  NN  \/  y  =  0
) )
2213, 18, 21mpjaodan 788 . . 3  |-  ( ( x  e.  NN0  /\  y  e.  NN0 )  ->  if ( y  =  0 ,  <. x ,  y
>. ,  <. y ,  ( x  mod  y
) >. )  e.  ( NN0  X.  NN0 )
)
2322rgen2a 2511 . 2  |-  A. x  e.  NN0  A. y  e. 
NN0  if ( y  =  0 ,  <. x ,  y >. ,  <. y ,  ( x  mod  y ) >. )  e.  ( NN0  X.  NN0 )
24 eucalgval.1 . . 3  |-  E  =  ( x  e.  NN0 ,  y  e.  NN0  |->  if ( y  =  0 , 
<. x ,  y >. ,  <. y ,  ( x  mod  y )
>. ) )
2524fmpo 6149 . 2  |-  ( A. x  e.  NN0  A. y  e.  NN0  if ( y  =  0 ,  <. x ,  y >. ,  <. y ,  ( x  mod  y ) >. )  e.  ( NN0  X.  NN0 ) 
<->  E : ( NN0 
X.  NN0 ) --> ( NN0 
X.  NN0 ) )
2623, 25mpbi 144 1  |-  E :
( NN0  X.  NN0 ) --> ( NN0  X.  NN0 )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    \/ wo 698    = wceq 1335    e. wcel 2128    =/= wne 2327   A.wral 2435   ifcif 3505   <.cop 3563    X. cxp 4584   -->wf 5166  (class class class)co 5824    e. cmpo 5826   0cc0 7732   NNcn 8833   NN0cn0 9090   ZZcz 9167    mod cmo 10221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4496  ax-cnex 7823  ax-resscn 7824  ax-1cn 7825  ax-1re 7826  ax-icn 7827  ax-addcl 7828  ax-addrcl 7829  ax-mulcl 7830  ax-mulrcl 7831  ax-addcom 7832  ax-mulcom 7833  ax-addass 7834  ax-mulass 7835  ax-distr 7836  ax-i2m1 7837  ax-0lt1 7838  ax-1rid 7839  ax-0id 7840  ax-rnegex 7841  ax-precex 7842  ax-cnre 7843  ax-pre-ltirr 7844  ax-pre-ltwlin 7845  ax-pre-lttrn 7846  ax-pre-apti 7847  ax-pre-ltadd 7848  ax-pre-mulgt0 7849  ax-pre-mulext 7850  ax-arch 7851
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-id 4253  df-po 4256  df-iso 4257  df-xp 4592  df-rel 4593  df-cnv 4594  df-co 4595  df-dm 4596  df-rn 4597  df-res 4598  df-ima 4599  df-iota 5135  df-fun 5172  df-fn 5173  df-f 5174  df-fv 5178  df-riota 5780  df-ov 5827  df-oprab 5828  df-mpo 5829  df-1st 6088  df-2nd 6089  df-pnf 7914  df-mnf 7915  df-xr 7916  df-ltxr 7917  df-le 7918  df-sub 8048  df-neg 8049  df-reap 8450  df-ap 8457  df-div 8546  df-inn 8834  df-n0 9091  df-z 9168  df-q 9529  df-rp 9561  df-fl 10169  df-mod 10222
This theorem is referenced by:  eucalgcvga  11935  eucalg  11936
  Copyright terms: Public domain W3C validator