ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eucalgf Unicode version

Theorem eucalgf 12223
Description: Domain and codomain of the step function  E for Euclid's Algorithm. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 28-May-2014.)
Hypothesis
Ref Expression
eucalgval.1  |-  E  =  ( x  e.  NN0 ,  y  e.  NN0  |->  if ( y  =  0 , 
<. x ,  y >. ,  <. y ,  ( x  mod  y )
>. ) )
Assertion
Ref Expression
eucalgf  |-  E :
( NN0  X.  NN0 ) --> ( NN0  X.  NN0 )
Distinct variable group:    x, y
Allowed substitution hints:    E( x, y)

Proof of Theorem eucalgf
StepHypRef Expression
1 nnne0 9018 . . . . . . . . 9  |-  ( y  e.  NN  ->  y  =/=  0 )
21adantl 277 . . . . . . . 8  |-  ( ( x  e.  NN0  /\  y  e.  NN )  ->  y  =/=  0 )
32neneqd 2388 . . . . . . 7  |-  ( ( x  e.  NN0  /\  y  e.  NN )  ->  -.  y  =  0 )
43iffalsed 3571 . . . . . 6  |-  ( ( x  e.  NN0  /\  y  e.  NN )  ->  if ( y  =  0 ,  <. x ,  y >. ,  <. y ,  ( x  mod  y ) >. )  =  <. y ,  ( x  mod  y )
>. )
5 nnnn0 9256 . . . . . . . 8  |-  ( y  e.  NN  ->  y  e.  NN0 )
65adantl 277 . . . . . . 7  |-  ( ( x  e.  NN0  /\  y  e.  NN )  ->  y  e.  NN0 )
7 nn0z 9346 . . . . . . . 8  |-  ( x  e.  NN0  ->  x  e.  ZZ )
8 zmodcl 10436 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  ( x  mod  y
)  e.  NN0 )
97, 8sylan 283 . . . . . . 7  |-  ( ( x  e.  NN0  /\  y  e.  NN )  ->  ( x  mod  y
)  e.  NN0 )
10 opelxpi 4695 . . . . . . 7  |-  ( ( y  e.  NN0  /\  ( x  mod  y )  e.  NN0 )  ->  <. y ,  ( x  mod  y ) >.  e.  ( NN0  X.  NN0 ) )
116, 9, 10syl2anc 411 . . . . . 6  |-  ( ( x  e.  NN0  /\  y  e.  NN )  -> 
<. y ,  ( x  mod  y ) >.  e.  ( NN0  X.  NN0 ) )
124, 11eqeltrd 2273 . . . . 5  |-  ( ( x  e.  NN0  /\  y  e.  NN )  ->  if ( y  =  0 ,  <. x ,  y >. ,  <. y ,  ( x  mod  y ) >. )  e.  ( NN0  X.  NN0 ) )
1312adantlr 477 . . . 4  |-  ( ( ( x  e.  NN0  /\  y  e.  NN0 )  /\  y  e.  NN )  ->  if ( y  =  0 ,  <. x ,  y >. ,  <. y ,  ( x  mod  y ) >. )  e.  ( NN0  X.  NN0 ) )
14 iftrue 3566 . . . . . 6  |-  ( y  =  0  ->  if ( y  =  0 ,  <. x ,  y
>. ,  <. y ,  ( x  mod  y
) >. )  =  <. x ,  y >. )
1514adantl 277 . . . . 5  |-  ( ( ( x  e.  NN0  /\  y  e.  NN0 )  /\  y  =  0
)  ->  if (
y  =  0 , 
<. x ,  y >. ,  <. y ,  ( x  mod  y )
>. )  =  <. x ,  y >. )
16 opelxpi 4695 . . . . . 6  |-  ( ( x  e.  NN0  /\  y  e.  NN0 )  ->  <. x ,  y >.  e.  ( NN0  X.  NN0 ) )
1716adantr 276 . . . . 5  |-  ( ( ( x  e.  NN0  /\  y  e.  NN0 )  /\  y  =  0
)  ->  <. x ,  y >.  e.  ( NN0  X.  NN0 ) )
1815, 17eqeltrd 2273 . . . 4  |-  ( ( ( x  e.  NN0  /\  y  e.  NN0 )  /\  y  =  0
)  ->  if (
y  =  0 , 
<. x ,  y >. ,  <. y ,  ( x  mod  y )
>. )  e.  ( NN0  X.  NN0 ) )
19 simpr 110 . . . . 5  |-  ( ( x  e.  NN0  /\  y  e.  NN0 )  -> 
y  e.  NN0 )
20 elnn0 9251 . . . . 5  |-  ( y  e.  NN0  <->  ( y  e.  NN  \/  y  =  0 ) )
2119, 20sylib 122 . . . 4  |-  ( ( x  e.  NN0  /\  y  e.  NN0 )  -> 
( y  e.  NN  \/  y  =  0
) )
2213, 18, 21mpjaodan 799 . . 3  |-  ( ( x  e.  NN0  /\  y  e.  NN0 )  ->  if ( y  =  0 ,  <. x ,  y
>. ,  <. y ,  ( x  mod  y
) >. )  e.  ( NN0  X.  NN0 )
)
2322rgen2a 2551 . 2  |-  A. x  e.  NN0  A. y  e. 
NN0  if ( y  =  0 ,  <. x ,  y >. ,  <. y ,  ( x  mod  y ) >. )  e.  ( NN0  X.  NN0 )
24 eucalgval.1 . . 3  |-  E  =  ( x  e.  NN0 ,  y  e.  NN0  |->  if ( y  =  0 , 
<. x ,  y >. ,  <. y ,  ( x  mod  y )
>. ) )
2524fmpo 6259 . 2  |-  ( A. x  e.  NN0  A. y  e.  NN0  if ( y  =  0 ,  <. x ,  y >. ,  <. y ,  ( x  mod  y ) >. )  e.  ( NN0  X.  NN0 ) 
<->  E : ( NN0 
X.  NN0 ) --> ( NN0 
X.  NN0 ) )
2623, 25mpbi 145 1  |-  E :
( NN0  X.  NN0 ) --> ( NN0  X.  NN0 )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    \/ wo 709    = wceq 1364    e. wcel 2167    =/= wne 2367   A.wral 2475   ifcif 3561   <.cop 3625    X. cxp 4661   -->wf 5254  (class class class)co 5922    e. cmpo 5924   0cc0 7879   NNcn 8990   NN0cn0 9249   ZZcz 9326    mod cmo 10414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-po 4331  df-iso 4332  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-n0 9250  df-z 9327  df-q 9694  df-rp 9729  df-fl 10360  df-mod 10415
This theorem is referenced by:  eucalgcvga  12226  eucalg  12227
  Copyright terms: Public domain W3C validator