ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eucalgf Unicode version

Theorem eucalgf 12038
Description: Domain and codomain of the step function  E for Euclid's Algorithm. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 28-May-2014.)
Hypothesis
Ref Expression
eucalgval.1  |-  E  =  ( x  e.  NN0 ,  y  e.  NN0  |->  if ( y  =  0 , 
<. x ,  y >. ,  <. y ,  ( x  mod  y )
>. ) )
Assertion
Ref Expression
eucalgf  |-  E :
( NN0  X.  NN0 ) --> ( NN0  X.  NN0 )
Distinct variable group:    x, y
Allowed substitution hints:    E( x, y)

Proof of Theorem eucalgf
StepHypRef Expression
1 nnne0 8936 . . . . . . . . 9  |-  ( y  e.  NN  ->  y  =/=  0 )
21adantl 277 . . . . . . . 8  |-  ( ( x  e.  NN0  /\  y  e.  NN )  ->  y  =/=  0 )
32neneqd 2368 . . . . . . 7  |-  ( ( x  e.  NN0  /\  y  e.  NN )  ->  -.  y  =  0 )
43iffalsed 3544 . . . . . 6  |-  ( ( x  e.  NN0  /\  y  e.  NN )  ->  if ( y  =  0 ,  <. x ,  y >. ,  <. y ,  ( x  mod  y ) >. )  =  <. y ,  ( x  mod  y )
>. )
5 nnnn0 9172 . . . . . . . 8  |-  ( y  e.  NN  ->  y  e.  NN0 )
65adantl 277 . . . . . . 7  |-  ( ( x  e.  NN0  /\  y  e.  NN )  ->  y  e.  NN0 )
7 nn0z 9262 . . . . . . . 8  |-  ( x  e.  NN0  ->  x  e.  ZZ )
8 zmodcl 10330 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  ( x  mod  y
)  e.  NN0 )
97, 8sylan 283 . . . . . . 7  |-  ( ( x  e.  NN0  /\  y  e.  NN )  ->  ( x  mod  y
)  e.  NN0 )
10 opelxpi 4655 . . . . . . 7  |-  ( ( y  e.  NN0  /\  ( x  mod  y )  e.  NN0 )  ->  <. y ,  ( x  mod  y ) >.  e.  ( NN0  X.  NN0 ) )
116, 9, 10syl2anc 411 . . . . . 6  |-  ( ( x  e.  NN0  /\  y  e.  NN )  -> 
<. y ,  ( x  mod  y ) >.  e.  ( NN0  X.  NN0 ) )
124, 11eqeltrd 2254 . . . . 5  |-  ( ( x  e.  NN0  /\  y  e.  NN )  ->  if ( y  =  0 ,  <. x ,  y >. ,  <. y ,  ( x  mod  y ) >. )  e.  ( NN0  X.  NN0 ) )
1312adantlr 477 . . . 4  |-  ( ( ( x  e.  NN0  /\  y  e.  NN0 )  /\  y  e.  NN )  ->  if ( y  =  0 ,  <. x ,  y >. ,  <. y ,  ( x  mod  y ) >. )  e.  ( NN0  X.  NN0 ) )
14 iftrue 3539 . . . . . 6  |-  ( y  =  0  ->  if ( y  =  0 ,  <. x ,  y
>. ,  <. y ,  ( x  mod  y
) >. )  =  <. x ,  y >. )
1514adantl 277 . . . . 5  |-  ( ( ( x  e.  NN0  /\  y  e.  NN0 )  /\  y  =  0
)  ->  if (
y  =  0 , 
<. x ,  y >. ,  <. y ,  ( x  mod  y )
>. )  =  <. x ,  y >. )
16 opelxpi 4655 . . . . . 6  |-  ( ( x  e.  NN0  /\  y  e.  NN0 )  ->  <. x ,  y >.  e.  ( NN0  X.  NN0 ) )
1716adantr 276 . . . . 5  |-  ( ( ( x  e.  NN0  /\  y  e.  NN0 )  /\  y  =  0
)  ->  <. x ,  y >.  e.  ( NN0  X.  NN0 ) )
1815, 17eqeltrd 2254 . . . 4  |-  ( ( ( x  e.  NN0  /\  y  e.  NN0 )  /\  y  =  0
)  ->  if (
y  =  0 , 
<. x ,  y >. ,  <. y ,  ( x  mod  y )
>. )  e.  ( NN0  X.  NN0 ) )
19 simpr 110 . . . . 5  |-  ( ( x  e.  NN0  /\  y  e.  NN0 )  -> 
y  e.  NN0 )
20 elnn0 9167 . . . . 5  |-  ( y  e.  NN0  <->  ( y  e.  NN  \/  y  =  0 ) )
2119, 20sylib 122 . . . 4  |-  ( ( x  e.  NN0  /\  y  e.  NN0 )  -> 
( y  e.  NN  \/  y  =  0
) )
2213, 18, 21mpjaodan 798 . . 3  |-  ( ( x  e.  NN0  /\  y  e.  NN0 )  ->  if ( y  =  0 ,  <. x ,  y
>. ,  <. y ,  ( x  mod  y
) >. )  e.  ( NN0  X.  NN0 )
)
2322rgen2a 2531 . 2  |-  A. x  e.  NN0  A. y  e. 
NN0  if ( y  =  0 ,  <. x ,  y >. ,  <. y ,  ( x  mod  y ) >. )  e.  ( NN0  X.  NN0 )
24 eucalgval.1 . . 3  |-  E  =  ( x  e.  NN0 ,  y  e.  NN0  |->  if ( y  =  0 , 
<. x ,  y >. ,  <. y ,  ( x  mod  y )
>. ) )
2524fmpo 6196 . 2  |-  ( A. x  e.  NN0  A. y  e.  NN0  if ( y  =  0 ,  <. x ,  y >. ,  <. y ,  ( x  mod  y ) >. )  e.  ( NN0  X.  NN0 ) 
<->  E : ( NN0 
X.  NN0 ) --> ( NN0 
X.  NN0 ) )
2623, 25mpbi 145 1  |-  E :
( NN0  X.  NN0 ) --> ( NN0  X.  NN0 )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    \/ wo 708    = wceq 1353    e. wcel 2148    =/= wne 2347   A.wral 2455   ifcif 3534   <.cop 3594    X. cxp 4621   -->wf 5208  (class class class)co 5869    e. cmpo 5871   0cc0 7802   NNcn 8908   NN0cn0 9165   ZZcz 9242    mod cmo 10308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-po 4293  df-iso 4294  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-n0 9166  df-z 9243  df-q 9609  df-rp 9641  df-fl 10256  df-mod 10309
This theorem is referenced by:  eucalgcvga  12041  eucalg  12042
  Copyright terms: Public domain W3C validator