ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rhmex Unicode version

Theorem rhmex 13532
Description: Set existence for ring homomorphism. (Contributed by Jim Kingdon, 16-May-2025.)
Assertion
Ref Expression
rhmex  |-  ( ( R  e.  V  /\  S  e.  W )  ->  ( R RingHom  S )  e.  _V )

Proof of Theorem rhmex
Dummy variables  r  s  f  v  w  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 basfn 12581 . . . . . 6  |-  Base  Fn  _V
2 vex 2755 . . . . . 6  |-  r  e. 
_V
3 funfvex 5554 . . . . . . 7  |-  ( ( Fun  Base  /\  r  e.  dom  Base )  ->  ( Base `  r )  e. 
_V )
43funfni 5338 . . . . . 6  |-  ( (
Base  Fn  _V  /\  r  e.  _V )  ->  ( Base `  r )  e. 
_V )
51, 2, 4mp2an 426 . . . . 5  |-  ( Base `  r )  e.  _V
6 vex 2755 . . . . . . 7  |-  s  e. 
_V
7 funfvex 5554 . . . . . . . 8  |-  ( ( Fun  Base  /\  s  e.  dom  Base )  ->  ( Base `  s )  e. 
_V )
87funfni 5338 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  s  e.  _V )  ->  ( Base `  s )  e. 
_V )
91, 6, 8mp2an 426 . . . . . 6  |-  ( Base `  s )  e.  _V
10 fnmap 6685 . . . . . . . 8  |-  ^m  Fn  ( _V  X.  _V )
11 vex 2755 . . . . . . . 8  |-  w  e. 
_V
12 vex 2755 . . . . . . . 8  |-  v  e. 
_V
13 fnovex 5933 . . . . . . . 8  |-  ( (  ^m  Fn  ( _V 
X.  _V )  /\  w  e.  _V  /\  v  e. 
_V )  ->  (
w  ^m  v )  e.  _V )
1410, 11, 12, 13mp3an 1348 . . . . . . 7  |-  ( w  ^m  v )  e. 
_V
1514rabex 4165 . . . . . 6  |-  { f  e.  ( w  ^m  v )  |  ( ( f `  ( 1r `  r ) )  =  ( 1r `  s )  /\  A. x  e.  v  A. y  e.  v  (
( f `  (
x ( +g  `  r
) y ) )  =  ( ( f `
 x ) ( +g  `  s ) ( f `  y
) )  /\  (
f `  ( x
( .r `  r
) y ) )  =  ( ( f `
 x ) ( .r `  s ) ( f `  y
) ) ) ) }  e.  _V
169, 15csbexa 4150 . . . . 5  |-  [_ ( Base `  s )  /  w ]_ { f  e.  ( w  ^m  v
)  |  ( ( f `  ( 1r
`  r ) )  =  ( 1r `  s )  /\  A. x  e.  v  A. y  e.  v  (
( f `  (
x ( +g  `  r
) y ) )  =  ( ( f `
 x ) ( +g  `  s ) ( f `  y
) )  /\  (
f `  ( x
( .r `  r
) y ) )  =  ( ( f `
 x ) ( .r `  s ) ( f `  y
) ) ) ) }  e.  _V
175, 16csbexa 4150 . . . 4  |-  [_ ( Base `  r )  / 
v ]_ [_ ( Base `  s )  /  w ]_ { f  e.  ( w  ^m  v )  |  ( ( f `
 ( 1r `  r ) )  =  ( 1r `  s
)  /\  A. x  e.  v  A. y  e.  v  ( (
f `  ( x
( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s ) ( f `
 y ) )  /\  ( f `  ( x ( .r
`  r ) y ) )  =  ( ( f `  x
) ( .r `  s ) ( f `
 y ) ) ) ) }  e.  _V
1817a1i 9 . . 3  |-  ( ( R  e.  V  /\  S  e.  W )  ->  [_ ( Base `  r
)  /  v ]_ [_ ( Base `  s
)  /  w ]_ { f  e.  ( w  ^m  v )  |  ( ( f `
 ( 1r `  r ) )  =  ( 1r `  s
)  /\  A. x  e.  v  A. y  e.  v  ( (
f `  ( x
( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s ) ( f `
 y ) )  /\  ( f `  ( x ( .r
`  r ) y ) )  =  ( ( f `  x
) ( .r `  s ) ( f `
 y ) ) ) ) }  e.  _V )
1918alrimivv 1886 . 2  |-  ( ( R  e.  V  /\  S  e.  W )  ->  A. r A. s [_ ( Base `  r
)  /  v ]_ [_ ( Base `  s
)  /  w ]_ { f  e.  ( w  ^m  v )  |  ( ( f `
 ( 1r `  r ) )  =  ( 1r `  s
)  /\  A. x  e.  v  A. y  e.  v  ( (
f `  ( x
( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s ) ( f `
 y ) )  /\  ( f `  ( x ( .r
`  r ) y ) )  =  ( ( f `  x
) ( .r `  s ) ( f `
 y ) ) ) ) }  e.  _V )
20 simpl 109 . 2  |-  ( ( R  e.  V  /\  S  e.  W )  ->  R  e.  V )
21 simpr 110 . 2  |-  ( ( R  e.  V  /\  S  e.  W )  ->  S  e.  W )
22 df-rhm 13527 . . 3  |- RingHom  =  ( r  e.  Ring ,  s  e.  Ring  |->  [_ ( Base `  r )  / 
v ]_ [_ ( Base `  s )  /  w ]_ { f  e.  ( w  ^m  v )  |  ( ( f `
 ( 1r `  r ) )  =  ( 1r `  s
)  /\  A. x  e.  v  A. y  e.  v  ( (
f `  ( x
( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s ) ( f `
 y ) )  /\  ( f `  ( x ( .r
`  r ) y ) )  =  ( ( f `  x
) ( .r `  s ) ( f `
 y ) ) ) ) } )
2322mpofvex 6232 . 2  |-  ( ( A. r A. s [_ ( Base `  r
)  /  v ]_ [_ ( Base `  s
)  /  w ]_ { f  e.  ( w  ^m  v )  |  ( ( f `
 ( 1r `  r ) )  =  ( 1r `  s
)  /\  A. x  e.  v  A. y  e.  v  ( (
f `  ( x
( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s ) ( f `
 y ) )  /\  ( f `  ( x ( .r
`  r ) y ) )  =  ( ( f `  x
) ( .r `  s ) ( f `
 y ) ) ) ) }  e.  _V  /\  R  e.  V  /\  S  e.  W
)  ->  ( R RingHom  S )  e.  _V )
2419, 20, 21, 23syl3anc 1249 1  |-  ( ( R  e.  V  /\  S  e.  W )  ->  ( R RingHom  S )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1362    = wceq 1364    e. wcel 2160   A.wral 2468   {crab 2472   _Vcvv 2752   [_csb 3072    X. cxp 4645    Fn wfn 5233   ` cfv 5238  (class class class)co 5900    ^m cmap 6678   Basecbs 12523   +g cplusg 12600   .rcmulr 12601   1rcur 13338   Ringcrg 13375   RingHom crh 13525
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4139  ax-pow 4195  ax-pr 4230  ax-un 4454  ax-cnex 7937  ax-resscn 7938  ax-1re 7940  ax-addrcl 7943
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-un 3148  df-in 3150  df-ss 3157  df-pw 3595  df-sn 3616  df-pr 3617  df-op 3619  df-uni 3828  df-int 3863  df-iun 3906  df-br 4022  df-opab 4083  df-mpt 4084  df-id 4314  df-xp 4653  df-rel 4654  df-cnv 4655  df-co 4656  df-dm 4657  df-rn 4658  df-res 4659  df-ima 4660  df-iota 5199  df-fun 5240  df-fn 5241  df-f 5242  df-fo 5244  df-fv 5246  df-ov 5903  df-oprab 5904  df-mpo 5905  df-1st 6169  df-2nd 6170  df-map 6680  df-inn 8955  df-ndx 12526  df-slot 12527  df-base 12529  df-rhm 13527
This theorem is referenced by:  isrim0  13536  zrhvalg  13940  zrhex  13943
  Copyright terms: Public domain W3C validator