ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rhmex Unicode version

Theorem rhmex 14121
Description: Set existence for ring homomorphism. (Contributed by Jim Kingdon, 16-May-2025.)
Assertion
Ref Expression
rhmex  |-  ( ( R  e.  V  /\  S  e.  W )  ->  ( R RingHom  S )  e.  _V )

Proof of Theorem rhmex
Dummy variables  r  s  f  v  w  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 basfn 13091 . . . . . 6  |-  Base  Fn  _V
2 vex 2802 . . . . . 6  |-  r  e. 
_V
3 funfvex 5644 . . . . . . 7  |-  ( ( Fun  Base  /\  r  e.  dom  Base )  ->  ( Base `  r )  e. 
_V )
43funfni 5423 . . . . . 6  |-  ( (
Base  Fn  _V  /\  r  e.  _V )  ->  ( Base `  r )  e. 
_V )
51, 2, 4mp2an 426 . . . . 5  |-  ( Base `  r )  e.  _V
6 vex 2802 . . . . . . 7  |-  s  e. 
_V
7 funfvex 5644 . . . . . . . 8  |-  ( ( Fun  Base  /\  s  e.  dom  Base )  ->  ( Base `  s )  e. 
_V )
87funfni 5423 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  s  e.  _V )  ->  ( Base `  s )  e. 
_V )
91, 6, 8mp2an 426 . . . . . 6  |-  ( Base `  s )  e.  _V
10 fnmap 6802 . . . . . . . 8  |-  ^m  Fn  ( _V  X.  _V )
11 vex 2802 . . . . . . . 8  |-  w  e. 
_V
12 vex 2802 . . . . . . . 8  |-  v  e. 
_V
13 fnovex 6034 . . . . . . . 8  |-  ( (  ^m  Fn  ( _V 
X.  _V )  /\  w  e.  _V  /\  v  e. 
_V )  ->  (
w  ^m  v )  e.  _V )
1410, 11, 12, 13mp3an 1371 . . . . . . 7  |-  ( w  ^m  v )  e. 
_V
1514rabex 4228 . . . . . 6  |-  { f  e.  ( w  ^m  v )  |  ( ( f `  ( 1r `  r ) )  =  ( 1r `  s )  /\  A. x  e.  v  A. y  e.  v  (
( f `  (
x ( +g  `  r
) y ) )  =  ( ( f `
 x ) ( +g  `  s ) ( f `  y
) )  /\  (
f `  ( x
( .r `  r
) y ) )  =  ( ( f `
 x ) ( .r `  s ) ( f `  y
) ) ) ) }  e.  _V
169, 15csbexa 4213 . . . . 5  |-  [_ ( Base `  s )  /  w ]_ { f  e.  ( w  ^m  v
)  |  ( ( f `  ( 1r
`  r ) )  =  ( 1r `  s )  /\  A. x  e.  v  A. y  e.  v  (
( f `  (
x ( +g  `  r
) y ) )  =  ( ( f `
 x ) ( +g  `  s ) ( f `  y
) )  /\  (
f `  ( x
( .r `  r
) y ) )  =  ( ( f `
 x ) ( .r `  s ) ( f `  y
) ) ) ) }  e.  _V
175, 16csbexa 4213 . . . 4  |-  [_ ( Base `  r )  / 
v ]_ [_ ( Base `  s )  /  w ]_ { f  e.  ( w  ^m  v )  |  ( ( f `
 ( 1r `  r ) )  =  ( 1r `  s
)  /\  A. x  e.  v  A. y  e.  v  ( (
f `  ( x
( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s ) ( f `
 y ) )  /\  ( f `  ( x ( .r
`  r ) y ) )  =  ( ( f `  x
) ( .r `  s ) ( f `
 y ) ) ) ) }  e.  _V
1817a1i 9 . . 3  |-  ( ( R  e.  V  /\  S  e.  W )  ->  [_ ( Base `  r
)  /  v ]_ [_ ( Base `  s
)  /  w ]_ { f  e.  ( w  ^m  v )  |  ( ( f `
 ( 1r `  r ) )  =  ( 1r `  s
)  /\  A. x  e.  v  A. y  e.  v  ( (
f `  ( x
( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s ) ( f `
 y ) )  /\  ( f `  ( x ( .r
`  r ) y ) )  =  ( ( f `  x
) ( .r `  s ) ( f `
 y ) ) ) ) }  e.  _V )
1918alrimivv 1921 . 2  |-  ( ( R  e.  V  /\  S  e.  W )  ->  A. r A. s [_ ( Base `  r
)  /  v ]_ [_ ( Base `  s
)  /  w ]_ { f  e.  ( w  ^m  v )  |  ( ( f `
 ( 1r `  r ) )  =  ( 1r `  s
)  /\  A. x  e.  v  A. y  e.  v  ( (
f `  ( x
( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s ) ( f `
 y ) )  /\  ( f `  ( x ( .r
`  r ) y ) )  =  ( ( f `  x
) ( .r `  s ) ( f `
 y ) ) ) ) }  e.  _V )
20 simpl 109 . 2  |-  ( ( R  e.  V  /\  S  e.  W )  ->  R  e.  V )
21 simpr 110 . 2  |-  ( ( R  e.  V  /\  S  e.  W )  ->  S  e.  W )
22 df-rhm 14116 . . 3  |- RingHom  =  ( r  e.  Ring ,  s  e.  Ring  |->  [_ ( Base `  r )  / 
v ]_ [_ ( Base `  s )  /  w ]_ { f  e.  ( w  ^m  v )  |  ( ( f `
 ( 1r `  r ) )  =  ( 1r `  s
)  /\  A. x  e.  v  A. y  e.  v  ( (
f `  ( x
( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s ) ( f `
 y ) )  /\  ( f `  ( x ( .r
`  r ) y ) )  =  ( ( f `  x
) ( .r `  s ) ( f `
 y ) ) ) ) } )
2322mpofvex 6351 . 2  |-  ( ( A. r A. s [_ ( Base `  r
)  /  v ]_ [_ ( Base `  s
)  /  w ]_ { f  e.  ( w  ^m  v )  |  ( ( f `
 ( 1r `  r ) )  =  ( 1r `  s
)  /\  A. x  e.  v  A. y  e.  v  ( (
f `  ( x
( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s ) ( f `
 y ) )  /\  ( f `  ( x ( .r
`  r ) y ) )  =  ( ( f `  x
) ( .r `  s ) ( f `
 y ) ) ) ) }  e.  _V  /\  R  e.  V  /\  S  e.  W
)  ->  ( R RingHom  S )  e.  _V )
2419, 20, 21, 23syl3anc 1271 1  |-  ( ( R  e.  V  /\  S  e.  W )  ->  ( R RingHom  S )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1393    = wceq 1395    e. wcel 2200   A.wral 2508   {crab 2512   _Vcvv 2799   [_csb 3124    X. cxp 4717    Fn wfn 5313   ` cfv 5318  (class class class)co 6001    ^m cmap 6795   Basecbs 13032   +g cplusg 13110   .rcmulr 13111   1rcur 13922   Ringcrg 13959   RingHom crh 14114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-cnex 8090  ax-resscn 8091  ax-1re 8093  ax-addrcl 8096
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fo 5324  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-map 6797  df-inn 9111  df-ndx 13035  df-slot 13036  df-base 13038  df-rhm 14116
This theorem is referenced by:  isrim0  14125  zrhval  14581  zrhvalg  14582  zrhex  14585
  Copyright terms: Public domain W3C validator