ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isrhm Unicode version

Theorem isrhm 13953
Description: A function is a ring homomorphism iff it preserves both addition and multiplication. (Contributed by Stefan O'Rear, 7-Mar-2015.)
Hypotheses
Ref Expression
isrhm.m  |-  M  =  (mulGrp `  R )
isrhm.n  |-  N  =  (mulGrp `  S )
Assertion
Ref Expression
isrhm  |-  ( F  e.  ( R RingHom  S
)  <->  ( ( R  e.  Ring  /\  S  e. 
Ring )  /\  ( F  e.  ( R  GrpHom  S )  /\  F  e.  ( M MndHom  N ) ) ) )

Proof of Theorem isrhm
Dummy variables  r  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfrhm2 13949 . . 3  |- RingHom  =  ( r  e.  Ring ,  s  e.  Ring  |->  ( ( r  GrpHom  s )  i^i  ( (mulGrp `  r
) MndHom  (mulGrp `  s )
) ) )
21elmpocl 6143 . 2  |-  ( F  e.  ( R RingHom  S
)  ->  ( R  e.  Ring  /\  S  e.  Ring ) )
3 ringgrp 13796 . . . . . . 7  |-  ( R  e.  Ring  ->  R  e. 
Grp )
4 ringgrp 13796 . . . . . . 7  |-  ( S  e.  Ring  ->  S  e. 
Grp )
5 ghmex 13624 . . . . . . 7  |-  ( ( R  e.  Grp  /\  S  e.  Grp )  ->  ( R  GrpHom  S )  e.  _V )
63, 4, 5syl2an 289 . . . . . 6  |-  ( ( R  e.  Ring  /\  S  e.  Ring )  ->  ( R  GrpHom  S )  e. 
_V )
7 inex1g 4181 . . . . . 6  |-  ( ( R  GrpHom  S )  e. 
_V  ->  ( ( R 
GrpHom  S )  i^i  (
(mulGrp `  R ) MndHom  (mulGrp `  S ) ) )  e.  _V )
86, 7syl 14 . . . . 5  |-  ( ( R  e.  Ring  /\  S  e.  Ring )  ->  (
( R  GrpHom  S )  i^i  ( (mulGrp `  R ) MndHom  (mulGrp `  S
) ) )  e. 
_V )
9 oveq12 5955 . . . . . . 7  |-  ( ( r  =  R  /\  s  =  S )  ->  ( r  GrpHom  s )  =  ( R  GrpHom  S ) )
10 fveq2 5578 . . . . . . . 8  |-  ( r  =  R  ->  (mulGrp `  r )  =  (mulGrp `  R ) )
11 fveq2 5578 . . . . . . . 8  |-  ( s  =  S  ->  (mulGrp `  s )  =  (mulGrp `  S ) )
1210, 11oveqan12d 5965 . . . . . . 7  |-  ( ( r  =  R  /\  s  =  S )  ->  ( (mulGrp `  r
) MndHom  (mulGrp `  s )
)  =  ( (mulGrp `  R ) MndHom  (mulGrp `  S ) ) )
139, 12ineq12d 3375 . . . . . 6  |-  ( ( r  =  R  /\  s  =  S )  ->  ( ( r  GrpHom  s )  i^i  ( (mulGrp `  r ) MndHom  (mulGrp `  s ) ) )  =  ( ( R 
GrpHom  S )  i^i  (
(mulGrp `  R ) MndHom  (mulGrp `  S ) ) ) )
1413, 1ovmpoga 6077 . . . . 5  |-  ( ( R  e.  Ring  /\  S  e.  Ring  /\  ( ( R  GrpHom  S )  i^i  ( (mulGrp `  R
) MndHom  (mulGrp `  S )
) )  e.  _V )  ->  ( R RingHom  S
)  =  ( ( R  GrpHom  S )  i^i  ( (mulGrp `  R
) MndHom  (mulGrp `  S )
) ) )
158, 14mpd3an3 1351 . . . 4  |-  ( ( R  e.  Ring  /\  S  e.  Ring )  ->  ( R RingHom  S )  =  ( ( R  GrpHom  S )  i^i  ( (mulGrp `  R ) MndHom  (mulGrp `  S
) ) ) )
1615eleq2d 2275 . . 3  |-  ( ( R  e.  Ring  /\  S  e.  Ring )  ->  ( F  e.  ( R RingHom  S )  <->  F  e.  (
( R  GrpHom  S )  i^i  ( (mulGrp `  R ) MndHom  (mulGrp `  S
) ) ) ) )
17 elin 3356 . . . 4  |-  ( F  e.  ( ( R 
GrpHom  S )  i^i  (
(mulGrp `  R ) MndHom  (mulGrp `  S ) ) )  <-> 
( F  e.  ( R  GrpHom  S )  /\  F  e.  ( (mulGrp `  R ) MndHom  (mulGrp `  S ) ) ) )
18 isrhm.m . . . . . . . 8  |-  M  =  (mulGrp `  R )
19 isrhm.n . . . . . . . 8  |-  N  =  (mulGrp `  S )
2018, 19oveq12i 5958 . . . . . . 7  |-  ( M MndHom  N )  =  ( (mulGrp `  R ) MndHom  (mulGrp `  S ) )
2120eqcomi 2209 . . . . . 6  |-  ( (mulGrp `  R ) MndHom  (mulGrp `  S ) )  =  ( M MndHom  N )
2221eleq2i 2272 . . . . 5  |-  ( F  e.  ( (mulGrp `  R ) MndHom  (mulGrp `  S
) )  <->  F  e.  ( M MndHom  N ) )
2322anbi2i 457 . . . 4  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  F  e.  ( (mulGrp `  R
) MndHom  (mulGrp `  S )
) )  <->  ( F  e.  ( R  GrpHom  S )  /\  F  e.  ( M MndHom  N ) ) )
2417, 23bitri 184 . . 3  |-  ( F  e.  ( ( R 
GrpHom  S )  i^i  (
(mulGrp `  R ) MndHom  (mulGrp `  S ) ) )  <-> 
( F  e.  ( R  GrpHom  S )  /\  F  e.  ( M MndHom  N ) ) )
2516, 24bitrdi 196 . 2  |-  ( ( R  e.  Ring  /\  S  e.  Ring )  ->  ( F  e.  ( R RingHom  S )  <->  ( F  e.  ( R  GrpHom  S )  /\  F  e.  ( M MndHom  N ) ) ) )
262, 25biadanii 613 1  |-  ( F  e.  ( R RingHom  S
)  <->  ( ( R  e.  Ring  /\  S  e. 
Ring )  /\  ( F  e.  ( R  GrpHom  S )  /\  F  e.  ( M MndHom  N ) ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   _Vcvv 2772    i^i cin 3165   ` cfv 5272  (class class class)co 5946   MndHom cmhm 13322   Grpcgrp 13365    GrpHom cghm 13609  mulGrpcmgp 13715   Ringcrg 13791   RingHom crh 13945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-addcom 8027  ax-addass 8029  ax-i2m1 8032  ax-0lt1 8033  ax-0id 8035  ax-rnegex 8036  ax-pre-ltirr 8039  ax-pre-ltadd 8043
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-map 6739  df-pnf 8111  df-mnf 8112  df-ltxr 8114  df-inn 9039  df-2 9097  df-3 9098  df-ndx 12868  df-slot 12869  df-base 12871  df-sets 12872  df-plusg 12955  df-mulr 12956  df-0g 13123  df-mgm 13221  df-sgrp 13267  df-mnd 13282  df-mhm 13324  df-grp 13368  df-ghm 13610  df-mgp 13716  df-ur 13755  df-ring 13793  df-rhm 13947
This theorem is referenced by:  rhmmhm  13954  rhmghm  13957  isrhm2d  13960  rhmf1o  13963  rhmco  13969  resrhm  14043  resrhm2b  14044  rhmpropd  14049
  Copyright terms: Public domain W3C validator