ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isrhm Unicode version

Theorem isrhm 13714
Description: A function is a ring homomorphism iff it preserves both addition and multiplication. (Contributed by Stefan O'Rear, 7-Mar-2015.)
Hypotheses
Ref Expression
isrhm.m  |-  M  =  (mulGrp `  R )
isrhm.n  |-  N  =  (mulGrp `  S )
Assertion
Ref Expression
isrhm  |-  ( F  e.  ( R RingHom  S
)  <->  ( ( R  e.  Ring  /\  S  e. 
Ring )  /\  ( F  e.  ( R  GrpHom  S )  /\  F  e.  ( M MndHom  N ) ) ) )

Proof of Theorem isrhm
Dummy variables  r  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfrhm2 13710 . . 3  |- RingHom  =  ( r  e.  Ring ,  s  e.  Ring  |->  ( ( r  GrpHom  s )  i^i  ( (mulGrp `  r
) MndHom  (mulGrp `  s )
) ) )
21elmpocl 6118 . 2  |-  ( F  e.  ( R RingHom  S
)  ->  ( R  e.  Ring  /\  S  e.  Ring ) )
3 ringgrp 13557 . . . . . . 7  |-  ( R  e.  Ring  ->  R  e. 
Grp )
4 ringgrp 13557 . . . . . . 7  |-  ( S  e.  Ring  ->  S  e. 
Grp )
5 ghmex 13385 . . . . . . 7  |-  ( ( R  e.  Grp  /\  S  e.  Grp )  ->  ( R  GrpHom  S )  e.  _V )
63, 4, 5syl2an 289 . . . . . 6  |-  ( ( R  e.  Ring  /\  S  e.  Ring )  ->  ( R  GrpHom  S )  e. 
_V )
7 inex1g 4169 . . . . . 6  |-  ( ( R  GrpHom  S )  e. 
_V  ->  ( ( R 
GrpHom  S )  i^i  (
(mulGrp `  R ) MndHom  (mulGrp `  S ) ) )  e.  _V )
86, 7syl 14 . . . . 5  |-  ( ( R  e.  Ring  /\  S  e.  Ring )  ->  (
( R  GrpHom  S )  i^i  ( (mulGrp `  R ) MndHom  (mulGrp `  S
) ) )  e. 
_V )
9 oveq12 5931 . . . . . . 7  |-  ( ( r  =  R  /\  s  =  S )  ->  ( r  GrpHom  s )  =  ( R  GrpHom  S ) )
10 fveq2 5558 . . . . . . . 8  |-  ( r  =  R  ->  (mulGrp `  r )  =  (mulGrp `  R ) )
11 fveq2 5558 . . . . . . . 8  |-  ( s  =  S  ->  (mulGrp `  s )  =  (mulGrp `  S ) )
1210, 11oveqan12d 5941 . . . . . . 7  |-  ( ( r  =  R  /\  s  =  S )  ->  ( (mulGrp `  r
) MndHom  (mulGrp `  s )
)  =  ( (mulGrp `  R ) MndHom  (mulGrp `  S ) ) )
139, 12ineq12d 3365 . . . . . 6  |-  ( ( r  =  R  /\  s  =  S )  ->  ( ( r  GrpHom  s )  i^i  ( (mulGrp `  r ) MndHom  (mulGrp `  s ) ) )  =  ( ( R 
GrpHom  S )  i^i  (
(mulGrp `  R ) MndHom  (mulGrp `  S ) ) ) )
1413, 1ovmpoga 6052 . . . . 5  |-  ( ( R  e.  Ring  /\  S  e.  Ring  /\  ( ( R  GrpHom  S )  i^i  ( (mulGrp `  R
) MndHom  (mulGrp `  S )
) )  e.  _V )  ->  ( R RingHom  S
)  =  ( ( R  GrpHom  S )  i^i  ( (mulGrp `  R
) MndHom  (mulGrp `  S )
) ) )
158, 14mpd3an3 1349 . . . 4  |-  ( ( R  e.  Ring  /\  S  e.  Ring )  ->  ( R RingHom  S )  =  ( ( R  GrpHom  S )  i^i  ( (mulGrp `  R ) MndHom  (mulGrp `  S
) ) ) )
1615eleq2d 2266 . . 3  |-  ( ( R  e.  Ring  /\  S  e.  Ring )  ->  ( F  e.  ( R RingHom  S )  <->  F  e.  (
( R  GrpHom  S )  i^i  ( (mulGrp `  R ) MndHom  (mulGrp `  S
) ) ) ) )
17 elin 3346 . . . 4  |-  ( F  e.  ( ( R 
GrpHom  S )  i^i  (
(mulGrp `  R ) MndHom  (mulGrp `  S ) ) )  <-> 
( F  e.  ( R  GrpHom  S )  /\  F  e.  ( (mulGrp `  R ) MndHom  (mulGrp `  S ) ) ) )
18 isrhm.m . . . . . . . 8  |-  M  =  (mulGrp `  R )
19 isrhm.n . . . . . . . 8  |-  N  =  (mulGrp `  S )
2018, 19oveq12i 5934 . . . . . . 7  |-  ( M MndHom  N )  =  ( (mulGrp `  R ) MndHom  (mulGrp `  S ) )
2120eqcomi 2200 . . . . . 6  |-  ( (mulGrp `  R ) MndHom  (mulGrp `  S ) )  =  ( M MndHom  N )
2221eleq2i 2263 . . . . 5  |-  ( F  e.  ( (mulGrp `  R ) MndHom  (mulGrp `  S
) )  <->  F  e.  ( M MndHom  N ) )
2322anbi2i 457 . . . 4  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  F  e.  ( (mulGrp `  R
) MndHom  (mulGrp `  S )
) )  <->  ( F  e.  ( R  GrpHom  S )  /\  F  e.  ( M MndHom  N ) ) )
2417, 23bitri 184 . . 3  |-  ( F  e.  ( ( R 
GrpHom  S )  i^i  (
(mulGrp `  R ) MndHom  (mulGrp `  S ) ) )  <-> 
( F  e.  ( R  GrpHom  S )  /\  F  e.  ( M MndHom  N ) ) )
2516, 24bitrdi 196 . 2  |-  ( ( R  e.  Ring  /\  S  e.  Ring )  ->  ( F  e.  ( R RingHom  S )  <->  ( F  e.  ( R  GrpHom  S )  /\  F  e.  ( M MndHom  N ) ) ) )
262, 25biadanii 613 1  |-  ( F  e.  ( R RingHom  S
)  <->  ( ( R  e.  Ring  /\  S  e. 
Ring )  /\  ( F  e.  ( R  GrpHom  S )  /\  F  e.  ( M MndHom  N ) ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   _Vcvv 2763    i^i cin 3156   ` cfv 5258  (class class class)co 5922   MndHom cmhm 13089   Grpcgrp 13132    GrpHom cghm 13370  mulGrpcmgp 13476   Ringcrg 13552   RingHom crh 13706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-map 6709  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-3 9050  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-plusg 12768  df-mulr 12769  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-mhm 13091  df-grp 13135  df-ghm 13371  df-mgp 13477  df-ur 13516  df-ring 13554  df-rhm 13708
This theorem is referenced by:  rhmmhm  13715  rhmghm  13718  isrhm2d  13721  rhmf1o  13724  rhmco  13730  resrhm  13804  resrhm2b  13805  rhmpropd  13810
  Copyright terms: Public domain W3C validator