ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isrhm Unicode version

Theorem isrhm 13657
Description: A function is a ring homomorphism iff it preserves both addition and multiplication. (Contributed by Stefan O'Rear, 7-Mar-2015.)
Hypotheses
Ref Expression
isrhm.m  |-  M  =  (mulGrp `  R )
isrhm.n  |-  N  =  (mulGrp `  S )
Assertion
Ref Expression
isrhm  |-  ( F  e.  ( R RingHom  S
)  <->  ( ( R  e.  Ring  /\  S  e. 
Ring )  /\  ( F  e.  ( R  GrpHom  S )  /\  F  e.  ( M MndHom  N ) ) ) )

Proof of Theorem isrhm
Dummy variables  r  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfrhm2 13653 . . 3  |- RingHom  =  ( r  e.  Ring ,  s  e.  Ring  |->  ( ( r  GrpHom  s )  i^i  ( (mulGrp `  r
) MndHom  (mulGrp `  s )
) ) )
21elmpocl 6115 . 2  |-  ( F  e.  ( R RingHom  S
)  ->  ( R  e.  Ring  /\  S  e.  Ring ) )
3 ringgrp 13500 . . . . . . 7  |-  ( R  e.  Ring  ->  R  e. 
Grp )
4 ringgrp 13500 . . . . . . 7  |-  ( S  e.  Ring  ->  S  e. 
Grp )
5 ghmex 13328 . . . . . . 7  |-  ( ( R  e.  Grp  /\  S  e.  Grp )  ->  ( R  GrpHom  S )  e.  _V )
63, 4, 5syl2an 289 . . . . . 6  |-  ( ( R  e.  Ring  /\  S  e.  Ring )  ->  ( R  GrpHom  S )  e. 
_V )
7 inex1g 4166 . . . . . 6  |-  ( ( R  GrpHom  S )  e. 
_V  ->  ( ( R 
GrpHom  S )  i^i  (
(mulGrp `  R ) MndHom  (mulGrp `  S ) ) )  e.  _V )
86, 7syl 14 . . . . 5  |-  ( ( R  e.  Ring  /\  S  e.  Ring )  ->  (
( R  GrpHom  S )  i^i  ( (mulGrp `  R ) MndHom  (mulGrp `  S
) ) )  e. 
_V )
9 oveq12 5928 . . . . . . 7  |-  ( ( r  =  R  /\  s  =  S )  ->  ( r  GrpHom  s )  =  ( R  GrpHom  S ) )
10 fveq2 5555 . . . . . . . 8  |-  ( r  =  R  ->  (mulGrp `  r )  =  (mulGrp `  R ) )
11 fveq2 5555 . . . . . . . 8  |-  ( s  =  S  ->  (mulGrp `  s )  =  (mulGrp `  S ) )
1210, 11oveqan12d 5938 . . . . . . 7  |-  ( ( r  =  R  /\  s  =  S )  ->  ( (mulGrp `  r
) MndHom  (mulGrp `  s )
)  =  ( (mulGrp `  R ) MndHom  (mulGrp `  S ) ) )
139, 12ineq12d 3362 . . . . . 6  |-  ( ( r  =  R  /\  s  =  S )  ->  ( ( r  GrpHom  s )  i^i  ( (mulGrp `  r ) MndHom  (mulGrp `  s ) ) )  =  ( ( R 
GrpHom  S )  i^i  (
(mulGrp `  R ) MndHom  (mulGrp `  S ) ) ) )
1413, 1ovmpoga 6049 . . . . 5  |-  ( ( R  e.  Ring  /\  S  e.  Ring  /\  ( ( R  GrpHom  S )  i^i  ( (mulGrp `  R
) MndHom  (mulGrp `  S )
) )  e.  _V )  ->  ( R RingHom  S
)  =  ( ( R  GrpHom  S )  i^i  ( (mulGrp `  R
) MndHom  (mulGrp `  S )
) ) )
158, 14mpd3an3 1349 . . . 4  |-  ( ( R  e.  Ring  /\  S  e.  Ring )  ->  ( R RingHom  S )  =  ( ( R  GrpHom  S )  i^i  ( (mulGrp `  R ) MndHom  (mulGrp `  S
) ) ) )
1615eleq2d 2263 . . 3  |-  ( ( R  e.  Ring  /\  S  e.  Ring )  ->  ( F  e.  ( R RingHom  S )  <->  F  e.  (
( R  GrpHom  S )  i^i  ( (mulGrp `  R ) MndHom  (mulGrp `  S
) ) ) ) )
17 elin 3343 . . . 4  |-  ( F  e.  ( ( R 
GrpHom  S )  i^i  (
(mulGrp `  R ) MndHom  (mulGrp `  S ) ) )  <-> 
( F  e.  ( R  GrpHom  S )  /\  F  e.  ( (mulGrp `  R ) MndHom  (mulGrp `  S ) ) ) )
18 isrhm.m . . . . . . . 8  |-  M  =  (mulGrp `  R )
19 isrhm.n . . . . . . . 8  |-  N  =  (mulGrp `  S )
2018, 19oveq12i 5931 . . . . . . 7  |-  ( M MndHom  N )  =  ( (mulGrp `  R ) MndHom  (mulGrp `  S ) )
2120eqcomi 2197 . . . . . 6  |-  ( (mulGrp `  R ) MndHom  (mulGrp `  S ) )  =  ( M MndHom  N )
2221eleq2i 2260 . . . . 5  |-  ( F  e.  ( (mulGrp `  R ) MndHom  (mulGrp `  S
) )  <->  F  e.  ( M MndHom  N ) )
2322anbi2i 457 . . . 4  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  F  e.  ( (mulGrp `  R
) MndHom  (mulGrp `  S )
) )  <->  ( F  e.  ( R  GrpHom  S )  /\  F  e.  ( M MndHom  N ) ) )
2417, 23bitri 184 . . 3  |-  ( F  e.  ( ( R 
GrpHom  S )  i^i  (
(mulGrp `  R ) MndHom  (mulGrp `  S ) ) )  <-> 
( F  e.  ( R  GrpHom  S )  /\  F  e.  ( M MndHom  N ) ) )
2516, 24bitrdi 196 . 2  |-  ( ( R  e.  Ring  /\  S  e.  Ring )  ->  ( F  e.  ( R RingHom  S )  <->  ( F  e.  ( R  GrpHom  S )  /\  F  e.  ( M MndHom  N ) ) ) )
262, 25biadanii 613 1  |-  ( F  e.  ( R RingHom  S
)  <->  ( ( R  e.  Ring  /\  S  e. 
Ring )  /\  ( F  e.  ( R  GrpHom  S )  /\  F  e.  ( M MndHom  N ) ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   _Vcvv 2760    i^i cin 3153   ` cfv 5255  (class class class)co 5919   MndHom cmhm 13032   Grpcgrp 13075    GrpHom cghm 13313  mulGrpcmgp 13419   Ringcrg 13495   RingHom crh 13649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-map 6706  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-3 9044  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-plusg 12711  df-mulr 12712  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-mhm 13034  df-grp 13078  df-ghm 13314  df-mgp 13420  df-ur 13459  df-ring 13497  df-rhm 13651
This theorem is referenced by:  rhmmhm  13658  rhmghm  13661  isrhm2d  13664  rhmf1o  13667  rhmco  13673  resrhm  13747  resrhm2b  13748  rhmpropd  13753
  Copyright terms: Public domain W3C validator