| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zrhval | Unicode version | ||
| Description: Define the unique homomorphism from the integers to a ring or field. (Contributed by Mario Carneiro, 13-Jun-2015.) (Revised by AV, 12-Jun-2019.) |
| Ref | Expression |
|---|---|
| zrhval.l |
|
| Ref | Expression |
|---|---|
| zrhval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zrhval.l |
. . . . . 6
| |
| 2 | df-zrh 14543 |
. . . . . . . . 9
| |
| 3 | 2 | mptrcl 5690 |
. . . . . . . 8
|
| 4 | 3, 1 | eleq2s 2304 |
. . . . . . 7
|
| 5 | zringring 14522 |
. . . . . . . . . 10
| |
| 6 | rhmex 14086 |
. . . . . . . . . 10
| |
| 7 | 5, 6 | mpan 424 |
. . . . . . . . 9
|
| 8 | 7 | uniexd 4508 |
. . . . . . . 8
|
| 9 | oveq2 5982 |
. . . . . . . . . 10
| |
| 10 | 9 | unieqd 3878 |
. . . . . . . . 9
|
| 11 | 10, 2 | fvmptg 5683 |
. . . . . . . 8
|
| 12 | 8, 11 | mpdan 421 |
. . . . . . 7
|
| 13 | 4, 12 | syl 14 |
. . . . . 6
|
| 14 | 1, 13 | eqtrid 2254 |
. . . . 5
|
| 15 | 14 | eleq2d 2279 |
. . . 4
|
| 16 | 15 | ibi 176 |
. . 3
|
| 17 | eluni2 3871 |
. . . . . . . . . 10
| |
| 18 | rexm 3571 |
. . . . . . . . . 10
| |
| 19 | 17, 18 | sylbi 121 |
. . . . . . . . 9
|
| 20 | rhmrcl2 14085 |
. . . . . . . . . 10
| |
| 21 | 20 | exlimiv 1624 |
. . . . . . . . 9
|
| 22 | 19, 21 | syl 14 |
. . . . . . . 8
|
| 23 | 22 | elexd 2793 |
. . . . . . 7
|
| 24 | 23, 12 | syl 14 |
. . . . . 6
|
| 25 | 1, 24 | eqtrid 2254 |
. . . . 5
|
| 26 | 25 | eleq2d 2279 |
. . . 4
|
| 27 | 26 | ibir 177 |
. . 3
|
| 28 | 16, 27 | impbii 126 |
. 2
|
| 29 | 28 | eqriv 2206 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-mulrcl 8066 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-precex 8077 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-apti 8082 ax-pre-ltadd 8083 ax-pre-mulgt0 8084 ax-addf 8089 ax-mulf 8090 |
| This theorem depends on definitions: df-bi 117 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-tp 3654 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-map 6767 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-reap 8690 df-inn 9079 df-2 9137 df-3 9138 df-4 9139 df-5 9140 df-6 9141 df-7 9142 df-8 9143 df-9 9144 df-n0 9338 df-z 9415 df-dec 9547 df-uz 9691 df-rp 9818 df-fz 10173 df-cj 11319 df-abs 11476 df-struct 13000 df-ndx 13001 df-slot 13002 df-base 13004 df-sets 13005 df-iress 13006 df-plusg 13089 df-mulr 13090 df-starv 13091 df-tset 13095 df-ple 13096 df-ds 13098 df-unif 13099 df-0g 13257 df-topgen 13259 df-mgm 13355 df-sgrp 13401 df-mnd 13416 df-mhm 13458 df-grp 13502 df-minusg 13503 df-subg 13673 df-ghm 13744 df-cmn 13789 df-mgp 13850 df-ur 13889 df-ring 13927 df-cring 13928 df-rhm 14081 df-subrg 14148 df-bl 14475 df-mopn 14476 df-fg 14478 df-metu 14479 df-cnfld 14486 df-zring 14520 df-zrh 14543 |
| This theorem is referenced by: zrhpropd 14555 |
| Copyright terms: Public domain | W3C validator |