ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringrng Unicode version

Theorem ringrng 13535
Description: A unital ring is a non-unital ring. (Contributed by AV, 6-Jan-2020.)
Assertion
Ref Expression
ringrng  |-  ( R  e.  Ring  ->  R  e. Rng )

Proof of Theorem ringrng
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ringabl 13531 . 2  |-  ( R  e.  Ring  ->  R  e. 
Abel )
2 eqid 2193 . . . 4  |-  ( Base `  R )  =  (
Base `  R )
3 eqid 2193 . . . 4  |-  (mulGrp `  R )  =  (mulGrp `  R )
4 eqid 2193 . . . 4  |-  ( +g  `  R )  =  ( +g  `  R )
5 eqid 2193 . . . 4  |-  ( .r
`  R )  =  ( .r `  R
)
62, 3, 4, 5isring 13499 . . 3  |-  ( R  e.  Ring  <->  ( R  e. 
Grp  /\  (mulGrp `  R
)  e.  Mnd  /\  A. x  e.  ( Base `  R ) A. y  e.  ( Base `  R
) A. z  e.  ( Base `  R
) ( ( x ( .r `  R
) ( y ( +g  `  R ) z ) )  =  ( ( x ( .r `  R ) y ) ( +g  `  R ) ( x ( .r `  R
) z ) )  /\  ( ( x ( +g  `  R
) y ) ( .r `  R ) z )  =  ( ( x ( .r
`  R ) z ) ( +g  `  R
) ( y ( .r `  R ) z ) ) ) ) )
7 simpl 109 . . . . 5  |-  ( ( R  e.  Abel  /\  ( R  e.  Grp  /\  (mulGrp `  R )  e.  Mnd  /\ 
A. x  e.  (
Base `  R ) A. y  e.  ( Base `  R ) A. z  e.  ( Base `  R ) ( ( x ( .r `  R ) ( y ( +g  `  R
) z ) )  =  ( ( x ( .r `  R
) y ) ( +g  `  R ) ( x ( .r
`  R ) z ) )  /\  (
( x ( +g  `  R ) y ) ( .r `  R
) z )  =  ( ( x ( .r `  R ) z ) ( +g  `  R ) ( y ( .r `  R
) z ) ) ) ) )  ->  R  e.  Abel )
8 mndsgrp 13005 . . . . . . 7  |-  ( (mulGrp `  R )  e.  Mnd  ->  (mulGrp `  R )  e. Smgrp )
983ad2ant2 1021 . . . . . 6  |-  ( ( R  e.  Grp  /\  (mulGrp `  R )  e. 
Mnd  /\  A. x  e.  ( Base `  R
) A. y  e.  ( Base `  R
) A. z  e.  ( Base `  R
) ( ( x ( .r `  R
) ( y ( +g  `  R ) z ) )  =  ( ( x ( .r `  R ) y ) ( +g  `  R ) ( x ( .r `  R
) z ) )  /\  ( ( x ( +g  `  R
) y ) ( .r `  R ) z )  =  ( ( x ( .r
`  R ) z ) ( +g  `  R
) ( y ( .r `  R ) z ) ) ) )  ->  (mulGrp `  R
)  e. Smgrp )
109adantl 277 . . . . 5  |-  ( ( R  e.  Abel  /\  ( R  e.  Grp  /\  (mulGrp `  R )  e.  Mnd  /\ 
A. x  e.  (
Base `  R ) A. y  e.  ( Base `  R ) A. z  e.  ( Base `  R ) ( ( x ( .r `  R ) ( y ( +g  `  R
) z ) )  =  ( ( x ( .r `  R
) y ) ( +g  `  R ) ( x ( .r
`  R ) z ) )  /\  (
( x ( +g  `  R ) y ) ( .r `  R
) z )  =  ( ( x ( .r `  R ) z ) ( +g  `  R ) ( y ( .r `  R
) z ) ) ) ) )  -> 
(mulGrp `  R )  e. Smgrp )
11 simpr3 1007 . . . . 5  |-  ( ( R  e.  Abel  /\  ( R  e.  Grp  /\  (mulGrp `  R )  e.  Mnd  /\ 
A. x  e.  (
Base `  R ) A. y  e.  ( Base `  R ) A. z  e.  ( Base `  R ) ( ( x ( .r `  R ) ( y ( +g  `  R
) z ) )  =  ( ( x ( .r `  R
) y ) ( +g  `  R ) ( x ( .r
`  R ) z ) )  /\  (
( x ( +g  `  R ) y ) ( .r `  R
) z )  =  ( ( x ( .r `  R ) z ) ( +g  `  R ) ( y ( .r `  R
) z ) ) ) ) )  ->  A. x  e.  ( Base `  R ) A. y  e.  ( Base `  R ) A. z  e.  ( Base `  R
) ( ( x ( .r `  R
) ( y ( +g  `  R ) z ) )  =  ( ( x ( .r `  R ) y ) ( +g  `  R ) ( x ( .r `  R
) z ) )  /\  ( ( x ( +g  `  R
) y ) ( .r `  R ) z )  =  ( ( x ( .r
`  R ) z ) ( +g  `  R
) ( y ( .r `  R ) z ) ) ) )
122, 3, 4, 5isrng 13433 . . . . 5  |-  ( R  e. Rng 
<->  ( R  e.  Abel  /\  (mulGrp `  R )  e. Smgrp  /\  A. x  e.  ( Base `  R
) A. y  e.  ( Base `  R
) A. z  e.  ( Base `  R
) ( ( x ( .r `  R
) ( y ( +g  `  R ) z ) )  =  ( ( x ( .r `  R ) y ) ( +g  `  R ) ( x ( .r `  R
) z ) )  /\  ( ( x ( +g  `  R
) y ) ( .r `  R ) z )  =  ( ( x ( .r
`  R ) z ) ( +g  `  R
) ( y ( .r `  R ) z ) ) ) ) )
137, 10, 11, 12syl3anbrc 1183 . . . 4  |-  ( ( R  e.  Abel  /\  ( R  e.  Grp  /\  (mulGrp `  R )  e.  Mnd  /\ 
A. x  e.  (
Base `  R ) A. y  e.  ( Base `  R ) A. z  e.  ( Base `  R ) ( ( x ( .r `  R ) ( y ( +g  `  R
) z ) )  =  ( ( x ( .r `  R
) y ) ( +g  `  R ) ( x ( .r
`  R ) z ) )  /\  (
( x ( +g  `  R ) y ) ( .r `  R
) z )  =  ( ( x ( .r `  R ) z ) ( +g  `  R ) ( y ( .r `  R
) z ) ) ) ) )  ->  R  e. Rng )
1413ex 115 . . 3  |-  ( R  e.  Abel  ->  ( ( R  e.  Grp  /\  (mulGrp `  R )  e. 
Mnd  /\  A. x  e.  ( Base `  R
) A. y  e.  ( Base `  R
) A. z  e.  ( Base `  R
) ( ( x ( .r `  R
) ( y ( +g  `  R ) z ) )  =  ( ( x ( .r `  R ) y ) ( +g  `  R ) ( x ( .r `  R
) z ) )  /\  ( ( x ( +g  `  R
) y ) ( .r `  R ) z )  =  ( ( x ( .r
`  R ) z ) ( +g  `  R
) ( y ( .r `  R ) z ) ) ) )  ->  R  e. Rng ) )
156, 14biimtrid 152 . 2  |-  ( R  e.  Abel  ->  ( R  e.  Ring  ->  R  e. Rng ) )
161, 15mpcom 36 1  |-  ( R  e.  Ring  ->  R  e. Rng )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2164   A.wral 2472   ` cfv 5255  (class class class)co 5919   Basecbs 12621   +g cplusg 12698   .rcmulr 12699  Smgrpcsgrp 12987   Mndcmnd 13000   Grpcgrp 13075   Abelcabl 13358  mulGrpcmgp 13419  Rngcrng 13431   Ringcrg 13495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-3 9044  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-plusg 12711  df-mulr 12712  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-grp 13078  df-minusg 13079  df-cmn 13359  df-abl 13360  df-mgp 13420  df-rng 13432  df-ur 13459  df-ring 13497
This theorem is referenced by:  ringssrng  13536  dflidl2  13987  df2idl2  14008  2idlcpbl  14023  quscrng  14032
  Copyright terms: Public domain W3C validator