ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringrng Unicode version

Theorem ringrng 13390
Description: A unital ring is a non-unital ring. (Contributed by AV, 6-Jan-2020.)
Assertion
Ref Expression
ringrng  |-  ( R  e.  Ring  ->  R  e. Rng )

Proof of Theorem ringrng
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ringabl 13386 . 2  |-  ( R  e.  Ring  ->  R  e. 
Abel )
2 eqid 2189 . . . 4  |-  ( Base `  R )  =  (
Base `  R )
3 eqid 2189 . . . 4  |-  (mulGrp `  R )  =  (mulGrp `  R )
4 eqid 2189 . . . 4  |-  ( +g  `  R )  =  ( +g  `  R )
5 eqid 2189 . . . 4  |-  ( .r
`  R )  =  ( .r `  R
)
62, 3, 4, 5isring 13354 . . 3  |-  ( R  e.  Ring  <->  ( R  e. 
Grp  /\  (mulGrp `  R
)  e.  Mnd  /\  A. x  e.  ( Base `  R ) A. y  e.  ( Base `  R
) A. z  e.  ( Base `  R
) ( ( x ( .r `  R
) ( y ( +g  `  R ) z ) )  =  ( ( x ( .r `  R ) y ) ( +g  `  R ) ( x ( .r `  R
) z ) )  /\  ( ( x ( +g  `  R
) y ) ( .r `  R ) z )  =  ( ( x ( .r
`  R ) z ) ( +g  `  R
) ( y ( .r `  R ) z ) ) ) ) )
7 simpl 109 . . . . 5  |-  ( ( R  e.  Abel  /\  ( R  e.  Grp  /\  (mulGrp `  R )  e.  Mnd  /\ 
A. x  e.  (
Base `  R ) A. y  e.  ( Base `  R ) A. z  e.  ( Base `  R ) ( ( x ( .r `  R ) ( y ( +g  `  R
) z ) )  =  ( ( x ( .r `  R
) y ) ( +g  `  R ) ( x ( .r
`  R ) z ) )  /\  (
( x ( +g  `  R ) y ) ( .r `  R
) z )  =  ( ( x ( .r `  R ) z ) ( +g  `  R ) ( y ( .r `  R
) z ) ) ) ) )  ->  R  e.  Abel )
8 mndsgrp 12882 . . . . . . 7  |-  ( (mulGrp `  R )  e.  Mnd  ->  (mulGrp `  R )  e. Smgrp )
983ad2ant2 1021 . . . . . 6  |-  ( ( R  e.  Grp  /\  (mulGrp `  R )  e. 
Mnd  /\  A. x  e.  ( Base `  R
) A. y  e.  ( Base `  R
) A. z  e.  ( Base `  R
) ( ( x ( .r `  R
) ( y ( +g  `  R ) z ) )  =  ( ( x ( .r `  R ) y ) ( +g  `  R ) ( x ( .r `  R
) z ) )  /\  ( ( x ( +g  `  R
) y ) ( .r `  R ) z )  =  ( ( x ( .r
`  R ) z ) ( +g  `  R
) ( y ( .r `  R ) z ) ) ) )  ->  (mulGrp `  R
)  e. Smgrp )
109adantl 277 . . . . 5  |-  ( ( R  e.  Abel  /\  ( R  e.  Grp  /\  (mulGrp `  R )  e.  Mnd  /\ 
A. x  e.  (
Base `  R ) A. y  e.  ( Base `  R ) A. z  e.  ( Base `  R ) ( ( x ( .r `  R ) ( y ( +g  `  R
) z ) )  =  ( ( x ( .r `  R
) y ) ( +g  `  R ) ( x ( .r
`  R ) z ) )  /\  (
( x ( +g  `  R ) y ) ( .r `  R
) z )  =  ( ( x ( .r `  R ) z ) ( +g  `  R ) ( y ( .r `  R
) z ) ) ) ) )  -> 
(mulGrp `  R )  e. Smgrp )
11 simpr3 1007 . . . . 5  |-  ( ( R  e.  Abel  /\  ( R  e.  Grp  /\  (mulGrp `  R )  e.  Mnd  /\ 
A. x  e.  (
Base `  R ) A. y  e.  ( Base `  R ) A. z  e.  ( Base `  R ) ( ( x ( .r `  R ) ( y ( +g  `  R
) z ) )  =  ( ( x ( .r `  R
) y ) ( +g  `  R ) ( x ( .r
`  R ) z ) )  /\  (
( x ( +g  `  R ) y ) ( .r `  R
) z )  =  ( ( x ( .r `  R ) z ) ( +g  `  R ) ( y ( .r `  R
) z ) ) ) ) )  ->  A. x  e.  ( Base `  R ) A. y  e.  ( Base `  R ) A. z  e.  ( Base `  R
) ( ( x ( .r `  R
) ( y ( +g  `  R ) z ) )  =  ( ( x ( .r `  R ) y ) ( +g  `  R ) ( x ( .r `  R
) z ) )  /\  ( ( x ( +g  `  R
) y ) ( .r `  R ) z )  =  ( ( x ( .r
`  R ) z ) ( +g  `  R
) ( y ( .r `  R ) z ) ) ) )
122, 3, 4, 5isrng 13288 . . . . 5  |-  ( R  e. Rng 
<->  ( R  e.  Abel  /\  (mulGrp `  R )  e. Smgrp  /\  A. x  e.  ( Base `  R
) A. y  e.  ( Base `  R
) A. z  e.  ( Base `  R
) ( ( x ( .r `  R
) ( y ( +g  `  R ) z ) )  =  ( ( x ( .r `  R ) y ) ( +g  `  R ) ( x ( .r `  R
) z ) )  /\  ( ( x ( +g  `  R
) y ) ( .r `  R ) z )  =  ( ( x ( .r
`  R ) z ) ( +g  `  R
) ( y ( .r `  R ) z ) ) ) ) )
137, 10, 11, 12syl3anbrc 1183 . . . 4  |-  ( ( R  e.  Abel  /\  ( R  e.  Grp  /\  (mulGrp `  R )  e.  Mnd  /\ 
A. x  e.  (
Base `  R ) A. y  e.  ( Base `  R ) A. z  e.  ( Base `  R ) ( ( x ( .r `  R ) ( y ( +g  `  R
) z ) )  =  ( ( x ( .r `  R
) y ) ( +g  `  R ) ( x ( .r
`  R ) z ) )  /\  (
( x ( +g  `  R ) y ) ( .r `  R
) z )  =  ( ( x ( .r `  R ) z ) ( +g  `  R ) ( y ( .r `  R
) z ) ) ) ) )  ->  R  e. Rng )
1413ex 115 . . 3  |-  ( R  e.  Abel  ->  ( ( R  e.  Grp  /\  (mulGrp `  R )  e. 
Mnd  /\  A. x  e.  ( Base `  R
) A. y  e.  ( Base `  R
) A. z  e.  ( Base `  R
) ( ( x ( .r `  R
) ( y ( +g  `  R ) z ) )  =  ( ( x ( .r `  R ) y ) ( +g  `  R ) ( x ( .r `  R
) z ) )  /\  ( ( x ( +g  `  R
) y ) ( .r `  R ) z )  =  ( ( x ( .r
`  R ) z ) ( +g  `  R
) ( y ( .r `  R ) z ) ) ) )  ->  R  e. Rng ) )
156, 14biimtrid 152 . 2  |-  ( R  e.  Abel  ->  ( R  e.  Ring  ->  R  e. Rng ) )
161, 15mpcom 36 1  |-  ( R  e.  Ring  ->  R  e. Rng )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2160   A.wral 2468   ` cfv 5235  (class class class)co 5896   Basecbs 12512   +g cplusg 12589   .rcmulr 12590  Smgrpcsgrp 12864   Mndcmnd 12877   Grpcgrp 12945   Abelcabl 13224  mulGrpcmgp 13274  Rngcrng 13286   Ringcrg 13350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7932  ax-resscn 7933  ax-1cn 7934  ax-1re 7935  ax-icn 7936  ax-addcl 7937  ax-addrcl 7938  ax-mulcl 7939  ax-addcom 7941  ax-addass 7943  ax-i2m1 7946  ax-0lt1 7947  ax-0id 7949  ax-rnegex 7950  ax-pre-ltirr 7953  ax-pre-ltadd 7957
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5852  df-ov 5899  df-oprab 5900  df-mpo 5901  df-pnf 8024  df-mnf 8025  df-ltxr 8027  df-inn 8950  df-2 9008  df-3 9009  df-ndx 12515  df-slot 12516  df-base 12518  df-sets 12519  df-plusg 12602  df-mulr 12603  df-0g 12763  df-mgm 12832  df-sgrp 12865  df-mnd 12878  df-grp 12948  df-minusg 12949  df-cmn 13225  df-abl 13226  df-mgp 13275  df-rng 13287  df-ur 13314  df-ring 13352
This theorem is referenced by:  ringssrng  13391  dflidl2  13804  df2idl2  13824  2idlcpbl  13839  quscrng  13847
  Copyright terms: Public domain W3C validator