ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringrng Unicode version

Theorem ringrng 13883
Description: A unital ring is a non-unital ring. (Contributed by AV, 6-Jan-2020.)
Assertion
Ref Expression
ringrng  |-  ( R  e.  Ring  ->  R  e. Rng )

Proof of Theorem ringrng
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ringabl 13879 . 2  |-  ( R  e.  Ring  ->  R  e. 
Abel )
2 eqid 2206 . . . 4  |-  ( Base `  R )  =  (
Base `  R )
3 eqid 2206 . . . 4  |-  (mulGrp `  R )  =  (mulGrp `  R )
4 eqid 2206 . . . 4  |-  ( +g  `  R )  =  ( +g  `  R )
5 eqid 2206 . . . 4  |-  ( .r
`  R )  =  ( .r `  R
)
62, 3, 4, 5isring 13847 . . 3  |-  ( R  e.  Ring  <->  ( R  e. 
Grp  /\  (mulGrp `  R
)  e.  Mnd  /\  A. x  e.  ( Base `  R ) A. y  e.  ( Base `  R
) A. z  e.  ( Base `  R
) ( ( x ( .r `  R
) ( y ( +g  `  R ) z ) )  =  ( ( x ( .r `  R ) y ) ( +g  `  R ) ( x ( .r `  R
) z ) )  /\  ( ( x ( +g  `  R
) y ) ( .r `  R ) z )  =  ( ( x ( .r
`  R ) z ) ( +g  `  R
) ( y ( .r `  R ) z ) ) ) ) )
7 simpl 109 . . . . 5  |-  ( ( R  e.  Abel  /\  ( R  e.  Grp  /\  (mulGrp `  R )  e.  Mnd  /\ 
A. x  e.  (
Base `  R ) A. y  e.  ( Base `  R ) A. z  e.  ( Base `  R ) ( ( x ( .r `  R ) ( y ( +g  `  R
) z ) )  =  ( ( x ( .r `  R
) y ) ( +g  `  R ) ( x ( .r
`  R ) z ) )  /\  (
( x ( +g  `  R ) y ) ( .r `  R
) z )  =  ( ( x ( .r `  R ) z ) ( +g  `  R ) ( y ( .r `  R
) z ) ) ) ) )  ->  R  e.  Abel )
8 mndsgrp 13338 . . . . . . 7  |-  ( (mulGrp `  R )  e.  Mnd  ->  (mulGrp `  R )  e. Smgrp )
983ad2ant2 1022 . . . . . 6  |-  ( ( R  e.  Grp  /\  (mulGrp `  R )  e. 
Mnd  /\  A. x  e.  ( Base `  R
) A. y  e.  ( Base `  R
) A. z  e.  ( Base `  R
) ( ( x ( .r `  R
) ( y ( +g  `  R ) z ) )  =  ( ( x ( .r `  R ) y ) ( +g  `  R ) ( x ( .r `  R
) z ) )  /\  ( ( x ( +g  `  R
) y ) ( .r `  R ) z )  =  ( ( x ( .r
`  R ) z ) ( +g  `  R
) ( y ( .r `  R ) z ) ) ) )  ->  (mulGrp `  R
)  e. Smgrp )
109adantl 277 . . . . 5  |-  ( ( R  e.  Abel  /\  ( R  e.  Grp  /\  (mulGrp `  R )  e.  Mnd  /\ 
A. x  e.  (
Base `  R ) A. y  e.  ( Base `  R ) A. z  e.  ( Base `  R ) ( ( x ( .r `  R ) ( y ( +g  `  R
) z ) )  =  ( ( x ( .r `  R
) y ) ( +g  `  R ) ( x ( .r
`  R ) z ) )  /\  (
( x ( +g  `  R ) y ) ( .r `  R
) z )  =  ( ( x ( .r `  R ) z ) ( +g  `  R ) ( y ( .r `  R
) z ) ) ) ) )  -> 
(mulGrp `  R )  e. Smgrp )
11 simpr3 1008 . . . . 5  |-  ( ( R  e.  Abel  /\  ( R  e.  Grp  /\  (mulGrp `  R )  e.  Mnd  /\ 
A. x  e.  (
Base `  R ) A. y  e.  ( Base `  R ) A. z  e.  ( Base `  R ) ( ( x ( .r `  R ) ( y ( +g  `  R
) z ) )  =  ( ( x ( .r `  R
) y ) ( +g  `  R ) ( x ( .r
`  R ) z ) )  /\  (
( x ( +g  `  R ) y ) ( .r `  R
) z )  =  ( ( x ( .r `  R ) z ) ( +g  `  R ) ( y ( .r `  R
) z ) ) ) ) )  ->  A. x  e.  ( Base `  R ) A. y  e.  ( Base `  R ) A. z  e.  ( Base `  R
) ( ( x ( .r `  R
) ( y ( +g  `  R ) z ) )  =  ( ( x ( .r `  R ) y ) ( +g  `  R ) ( x ( .r `  R
) z ) )  /\  ( ( x ( +g  `  R
) y ) ( .r `  R ) z )  =  ( ( x ( .r
`  R ) z ) ( +g  `  R
) ( y ( .r `  R ) z ) ) ) )
122, 3, 4, 5isrng 13781 . . . . 5  |-  ( R  e. Rng 
<->  ( R  e.  Abel  /\  (mulGrp `  R )  e. Smgrp  /\  A. x  e.  ( Base `  R
) A. y  e.  ( Base `  R
) A. z  e.  ( Base `  R
) ( ( x ( .r `  R
) ( y ( +g  `  R ) z ) )  =  ( ( x ( .r `  R ) y ) ( +g  `  R ) ( x ( .r `  R
) z ) )  /\  ( ( x ( +g  `  R
) y ) ( .r `  R ) z )  =  ( ( x ( .r
`  R ) z ) ( +g  `  R
) ( y ( .r `  R ) z ) ) ) ) )
137, 10, 11, 12syl3anbrc 1184 . . . 4  |-  ( ( R  e.  Abel  /\  ( R  e.  Grp  /\  (mulGrp `  R )  e.  Mnd  /\ 
A. x  e.  (
Base `  R ) A. y  e.  ( Base `  R ) A. z  e.  ( Base `  R ) ( ( x ( .r `  R ) ( y ( +g  `  R
) z ) )  =  ( ( x ( .r `  R
) y ) ( +g  `  R ) ( x ( .r
`  R ) z ) )  /\  (
( x ( +g  `  R ) y ) ( .r `  R
) z )  =  ( ( x ( .r `  R ) z ) ( +g  `  R ) ( y ( .r `  R
) z ) ) ) ) )  ->  R  e. Rng )
1413ex 115 . . 3  |-  ( R  e.  Abel  ->  ( ( R  e.  Grp  /\  (mulGrp `  R )  e. 
Mnd  /\  A. x  e.  ( Base `  R
) A. y  e.  ( Base `  R
) A. z  e.  ( Base `  R
) ( ( x ( .r `  R
) ( y ( +g  `  R ) z ) )  =  ( ( x ( .r `  R ) y ) ( +g  `  R ) ( x ( .r `  R
) z ) )  /\  ( ( x ( +g  `  R
) y ) ( .r `  R ) z )  =  ( ( x ( .r
`  R ) z ) ( +g  `  R
) ( y ( .r `  R ) z ) ) ) )  ->  R  e. Rng ) )
156, 14biimtrid 152 . 2  |-  ( R  e.  Abel  ->  ( R  e.  Ring  ->  R  e. Rng ) )
161, 15mpcom 36 1  |-  ( R  e.  Ring  ->  R  e. Rng )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2177   A.wral 2485   ` cfv 5285  (class class class)co 5962   Basecbs 12917   +g cplusg 12994   .rcmulr 12995  Smgrpcsgrp 13318   Mndcmnd 13333   Grpcgrp 13417   Abelcabl 13706  mulGrpcmgp 13767  Rngcrng 13779   Ringcrg 13843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4170  ax-sep 4173  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-addcom 8055  ax-addass 8057  ax-i2m1 8060  ax-0lt1 8061  ax-0id 8063  ax-rnegex 8064  ax-pre-ltirr 8067  ax-pre-ltadd 8071
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-id 4353  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-pnf 8139  df-mnf 8140  df-ltxr 8142  df-inn 9067  df-2 9125  df-3 9126  df-ndx 12920  df-slot 12921  df-base 12923  df-sets 12924  df-plusg 13007  df-mulr 13008  df-0g 13175  df-mgm 13273  df-sgrp 13319  df-mnd 13334  df-grp 13420  df-minusg 13421  df-cmn 13707  df-abl 13708  df-mgp 13768  df-rng 13780  df-ur 13807  df-ring 13845
This theorem is referenced by:  ringssrng  13884  dflidl2  14335  df2idl2  14356  2idlcpbl  14371  quscrng  14380
  Copyright terms: Public domain W3C validator