ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  quscrng Unicode version

Theorem quscrng 14032
Description: The quotient of a commutative ring by an ideal is a commutative ring. (Contributed by Mario Carneiro, 15-Jun-2015.) (Proof shortened by AV, 3-Apr-2025.)
Hypotheses
Ref Expression
quscrng.u  |-  U  =  ( R  /.s  ( R ~QG  S
) )
quscrng.i  |-  I  =  (LIdeal `  R )
Assertion
Ref Expression
quscrng  |-  ( ( R  e.  CRing  /\  S  e.  I )  ->  U  e.  CRing )

Proof of Theorem quscrng
Dummy variables  u  v  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 crngring 13507 . . 3  |-  ( R  e.  CRing  ->  R  e.  Ring )
2 simpr 110 . . . 4  |-  ( ( R  e.  CRing  /\  S  e.  I )  ->  S  e.  I )
3 quscrng.i . . . . . 6  |-  I  =  (LIdeal `  R )
43crng2idl 14030 . . . . 5  |-  ( R  e.  CRing  ->  I  =  (2Ideal `  R ) )
54adantr 276 . . . 4  |-  ( ( R  e.  CRing  /\  S  e.  I )  ->  I  =  (2Ideal `  R )
)
62, 5eleqtrd 2272 . . 3  |-  ( ( R  e.  CRing  /\  S  e.  I )  ->  S  e.  (2Ideal `  R )
)
7 quscrng.u . . . 4  |-  U  =  ( R  /.s  ( R ~QG  S
) )
8 eqid 2193 . . . 4  |-  (2Ideal `  R )  =  (2Ideal `  R )
97, 8qusring 14026 . . 3  |-  ( ( R  e.  Ring  /\  S  e.  (2Ideal `  R )
)  ->  U  e.  Ring )
101, 6, 9syl2an2r 595 . 2  |-  ( ( R  e.  CRing  /\  S  e.  I )  ->  U  e.  Ring )
117a1i 9 . . . . . . 7  |-  ( ( R  e.  CRing  /\  S  e.  I )  ->  U  =  ( R  /.s  ( R ~QG  S ) ) )
12 eqidd 2194 . . . . . . 7  |-  ( ( R  e.  CRing  /\  S  e.  I )  ->  ( Base `  R )  =  ( Base `  R
) )
13 eqgex 13294 . . . . . . 7  |-  ( ( R  e.  CRing  /\  S  e.  I )  ->  ( R ~QG  S )  e.  _V )
141adantr 276 . . . . . . 7  |-  ( ( R  e.  CRing  /\  S  e.  I )  ->  R  e.  Ring )
1511, 12, 13, 14qusbas 12913 . . . . . 6  |-  ( ( R  e.  CRing  /\  S  e.  I )  ->  (
( Base `  R ) /. ( R ~QG  S ) )  =  ( Base `  U
) )
1615eleq2d 2263 . . . . 5  |-  ( ( R  e.  CRing  /\  S  e.  I )  ->  (
x  e.  ( (
Base `  R ) /. ( R ~QG  S ) )  <->  x  e.  ( Base `  U )
) )
1715eleq2d 2263 . . . . 5  |-  ( ( R  e.  CRing  /\  S  e.  I )  ->  (
y  e.  ( (
Base `  R ) /. ( R ~QG  S ) )  <->  y  e.  ( Base `  U )
) )
1816, 17anbi12d 473 . . . 4  |-  ( ( R  e.  CRing  /\  S  e.  I )  ->  (
( x  e.  ( ( Base `  R
) /. ( R ~QG  S ) )  /\  y  e.  ( ( Base `  R
) /. ( R ~QG  S ) ) )  <->  ( x  e.  ( Base `  U
)  /\  y  e.  ( Base `  U )
) ) )
19 eqid 2193 . . . . . 6  |-  ( (
Base `  R ) /. ( R ~QG  S ) )  =  ( ( Base `  R
) /. ( R ~QG  S ) )
20 oveq2 5927 . . . . . . 7  |-  ( [ u ] ( R ~QG  S )  =  y  -> 
( x ( .r
`  U ) [ u ] ( R ~QG  S ) )  =  ( x ( .r `  U ) y ) )
21 oveq1 5926 . . . . . . 7  |-  ( [ u ] ( R ~QG  S )  =  y  -> 
( [ u ]
( R ~QG  S ) ( .r
`  U ) x )  =  ( y ( .r `  U
) x ) )
2220, 21eqeq12d 2208 . . . . . 6  |-  ( [ u ] ( R ~QG  S )  =  y  -> 
( ( x ( .r `  U ) [ u ] ( R ~QG  S ) )  =  ( [ u ]
( R ~QG  S ) ( .r
`  U ) x )  <->  ( x ( .r `  U ) y )  =  ( y ( .r `  U ) x ) ) )
23 oveq1 5926 . . . . . . . . 9  |-  ( [ v ] ( R ~QG  S )  =  x  -> 
( [ v ] ( R ~QG  S ) ( .r
`  U ) [ u ] ( R ~QG  S ) )  =  ( x ( .r `  U ) [ u ] ( R ~QG  S ) ) )
24 oveq2 5927 . . . . . . . . 9  |-  ( [ v ] ( R ~QG  S )  =  x  -> 
( [ u ]
( R ~QG  S ) ( .r
`  U ) [ v ] ( R ~QG  S ) )  =  ( [ u ] ( R ~QG  S ) ( .r
`  U ) x ) )
2523, 24eqeq12d 2208 . . . . . . . 8  |-  ( [ v ] ( R ~QG  S )  =  x  -> 
( ( [ v ] ( R ~QG  S ) ( .r `  U
) [ u ]
( R ~QG  S ) )  =  ( [ u ]
( R ~QG  S ) ( .r
`  U ) [ v ] ( R ~QG  S ) )  <->  ( x
( .r `  U
) [ u ]
( R ~QG  S ) )  =  ( [ u ]
( R ~QG  S ) ( .r
`  U ) x ) ) )
26 eqid 2193 . . . . . . . . . . . 12  |-  ( Base `  R )  =  (
Base `  R )
27 eqid 2193 . . . . . . . . . . . 12  |-  ( .r
`  R )  =  ( .r `  R
)
2826, 27crngcom 13513 . . . . . . . . . . 11  |-  ( ( R  e.  CRing  /\  u  e.  ( Base `  R
)  /\  v  e.  ( Base `  R )
)  ->  ( u
( .r `  R
) v )  =  ( v ( .r
`  R ) u ) )
2928ad4ant134 1219 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
CRing  /\  S  e.  I
)  /\  u  e.  ( Base `  R )
)  /\  v  e.  ( Base `  R )
)  ->  ( u
( .r `  R
) v )  =  ( v ( .r
`  R ) u ) )
3029eceq1d 6625 . . . . . . . . 9  |-  ( ( ( ( R  e. 
CRing  /\  S  e.  I
)  /\  u  e.  ( Base `  R )
)  /\  v  e.  ( Base `  R )
)  ->  [ (
u ( .r `  R ) v ) ] ( R ~QG  S )  =  [ ( v ( .r `  R
) u ) ] ( R ~QG  S ) )
31 ringrng 13535 . . . . . . . . . . . . . 14  |-  ( R  e.  Ring  ->  R  e. Rng )
321, 31syl 14 . . . . . . . . . . . . 13  |-  ( R  e.  CRing  ->  R  e. Rng )
3332adantr 276 . . . . . . . . . . . 12  |-  ( ( R  e.  CRing  /\  S  e.  I )  ->  R  e. Rng )
343lidlsubg 13985 . . . . . . . . . . . . 13  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  S  e.  (SubGrp `  R )
)
351, 34sylan 283 . . . . . . . . . . . 12  |-  ( ( R  e.  CRing  /\  S  e.  I )  ->  S  e.  (SubGrp `  R )
)
3633, 6, 353jca 1179 . . . . . . . . . . 11  |-  ( ( R  e.  CRing  /\  S  e.  I )  ->  ( R  e. Rng  /\  S  e.  (2Ideal `  R )  /\  S  e.  (SubGrp `  R ) ) )
3736adantr 276 . . . . . . . . . 10  |-  ( ( ( R  e.  CRing  /\  S  e.  I )  /\  u  e.  (
Base `  R )
)  ->  ( R  e. Rng  /\  S  e.  (2Ideal `  R )  /\  S  e.  (SubGrp `  R )
) )
38 simpr 110 . . . . . . . . . . 11  |-  ( ( ( R  e.  CRing  /\  S  e.  I )  /\  u  e.  (
Base `  R )
)  ->  u  e.  ( Base `  R )
)
3938anim1i 340 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
CRing  /\  S  e.  I
)  /\  u  e.  ( Base `  R )
)  /\  v  e.  ( Base `  R )
)  ->  ( u  e.  ( Base `  R
)  /\  v  e.  ( Base `  R )
) )
40 eqid 2193 . . . . . . . . . . 11  |-  ( R ~QG  S )  =  ( R ~QG  S )
41 eqid 2193 . . . . . . . . . . 11  |-  ( .r
`  U )  =  ( .r `  U
)
4240, 7, 26, 27, 41qusmulrng 14031 . . . . . . . . . 10  |-  ( ( ( R  e. Rng  /\  S  e.  (2Ideal `  R
)  /\  S  e.  (SubGrp `  R ) )  /\  ( u  e.  ( Base `  R
)  /\  v  e.  ( Base `  R )
) )  ->  ( [ u ] ( R ~QG  S ) ( .r
`  U ) [ v ] ( R ~QG  S ) )  =  [
( u ( .r
`  R ) v ) ] ( R ~QG  S ) )
4337, 39, 42syl2an2r 595 . . . . . . . . 9  |-  ( ( ( ( R  e. 
CRing  /\  S  e.  I
)  /\  u  e.  ( Base `  R )
)  /\  v  e.  ( Base `  R )
)  ->  ( [
u ] ( R ~QG  S ) ( .r `  U ) [ v ] ( R ~QG  S ) )  =  [ ( u ( .r `  R ) v ) ] ( R ~QG  S ) )
4439ancomd 267 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
CRing  /\  S  e.  I
)  /\  u  e.  ( Base `  R )
)  /\  v  e.  ( Base `  R )
)  ->  ( v  e.  ( Base `  R
)  /\  u  e.  ( Base `  R )
) )
4540, 7, 26, 27, 41qusmulrng 14031 . . . . . . . . . 10  |-  ( ( ( R  e. Rng  /\  S  e.  (2Ideal `  R
)  /\  S  e.  (SubGrp `  R ) )  /\  ( v  e.  ( Base `  R
)  /\  u  e.  ( Base `  R )
) )  ->  ( [ v ] ( R ~QG  S ) ( .r
`  U ) [ u ] ( R ~QG  S ) )  =  [
( v ( .r
`  R ) u ) ] ( R ~QG  S ) )
4637, 44, 45syl2an2r 595 . . . . . . . . 9  |-  ( ( ( ( R  e. 
CRing  /\  S  e.  I
)  /\  u  e.  ( Base `  R )
)  /\  v  e.  ( Base `  R )
)  ->  ( [
v ] ( R ~QG  S ) ( .r `  U ) [ u ] ( R ~QG  S ) )  =  [ ( v ( .r `  R ) u ) ] ( R ~QG  S ) )
4730, 43, 463eqtr4rd 2237 . . . . . . . 8  |-  ( ( ( ( R  e. 
CRing  /\  S  e.  I
)  /\  u  e.  ( Base `  R )
)  /\  v  e.  ( Base `  R )
)  ->  ( [
v ] ( R ~QG  S ) ( .r `  U ) [ u ] ( R ~QG  S ) )  =  ( [ u ] ( R ~QG  S ) ( .r `  U ) [ v ] ( R ~QG  S ) ) )
4819, 25, 47ectocld 6657 . . . . . . 7  |-  ( ( ( ( R  e. 
CRing  /\  S  e.  I
)  /\  u  e.  ( Base `  R )
)  /\  x  e.  ( ( Base `  R
) /. ( R ~QG  S ) ) )  -> 
( x ( .r
`  U ) [ u ] ( R ~QG  S ) )  =  ( [ u ] ( R ~QG  S ) ( .r
`  U ) x ) )
4948an32s 568 . . . . . 6  |-  ( ( ( ( R  e. 
CRing  /\  S  e.  I
)  /\  x  e.  ( ( Base `  R
) /. ( R ~QG  S ) ) )  /\  u  e.  ( Base `  R ) )  -> 
( x ( .r
`  U ) [ u ] ( R ~QG  S ) )  =  ( [ u ] ( R ~QG  S ) ( .r
`  U ) x ) )
5019, 22, 49ectocld 6657 . . . . 5  |-  ( ( ( ( R  e. 
CRing  /\  S  e.  I
)  /\  x  e.  ( ( Base `  R
) /. ( R ~QG  S ) ) )  /\  y  e.  ( ( Base `  R ) /. ( R ~QG  S ) ) )  ->  ( x ( .r `  U ) y )  =  ( y ( .r `  U ) x ) )
5150expl 378 . . . 4  |-  ( ( R  e.  CRing  /\  S  e.  I )  ->  (
( x  e.  ( ( Base `  R
) /. ( R ~QG  S ) )  /\  y  e.  ( ( Base `  R
) /. ( R ~QG  S ) ) )  -> 
( x ( .r
`  U ) y )  =  ( y ( .r `  U
) x ) ) )
5218, 51sylbird 170 . . 3  |-  ( ( R  e.  CRing  /\  S  e.  I )  ->  (
( x  e.  (
Base `  U )  /\  y  e.  ( Base `  U ) )  ->  ( x ( .r `  U ) y )  =  ( y ( .r `  U ) x ) ) )
5352ralrimivv 2575 . 2  |-  ( ( R  e.  CRing  /\  S  e.  I )  ->  A. x  e.  ( Base `  U
) A. y  e.  ( Base `  U
) ( x ( .r `  U ) y )  =  ( y ( .r `  U ) x ) )
54 eqid 2193 . . 3  |-  ( Base `  U )  =  (
Base `  U )
5554, 41iscrng2 13514 . 2  |-  ( U  e.  CRing 
<->  ( U  e.  Ring  /\ 
A. x  e.  (
Base `  U ) A. y  e.  ( Base `  U ) ( x ( .r `  U ) y )  =  ( y ( .r `  U ) x ) ) )
5610, 53, 55sylanbrc 417 1  |-  ( ( R  e.  CRing  /\  S  e.  I )  ->  U  e.  CRing )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2164   A.wral 2472   _Vcvv 2760   ` cfv 5255  (class class class)co 5919   [cec 6587   /.cqs 6588   Basecbs 12621   .rcmulr 12699    /.s cqus 12886  SubGrpcsubg 13240   ~QG cqg 13242  Rngcrng 13431   Ringcrg 13495   CRingccrg 13496  LIdealclidl 13966  2Idealc2idl 13998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-tp 3627  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-tpos 6300  df-er 6589  df-ec 6591  df-qs 6595  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-5 9046  df-6 9047  df-7 9048  df-8 9049  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-iress 12629  df-plusg 12711  df-mulr 12712  df-sca 12714  df-vsca 12715  df-ip 12716  df-0g 12872  df-iimas 12888  df-qus 12889  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-grp 13078  df-minusg 13079  df-sbg 13080  df-subg 13243  df-nsg 13244  df-eqg 13245  df-cmn 13359  df-abl 13360  df-mgp 13420  df-rng 13432  df-ur 13459  df-srg 13463  df-ring 13497  df-cring 13498  df-oppr 13567  df-subrg 13718  df-lmod 13788  df-lssm 13852  df-lsp 13886  df-sra 13934  df-rgmod 13935  df-lidl 13968  df-rsp 13969  df-2idl 13999
This theorem is referenced by:  zncrng2  14134
  Copyright terms: Public domain W3C validator