ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  quscrng Unicode version

Theorem quscrng 14328
Description: The quotient of a commutative ring by an ideal is a commutative ring. (Contributed by Mario Carneiro, 15-Jun-2015.) (Proof shortened by AV, 3-Apr-2025.)
Hypotheses
Ref Expression
quscrng.u  |-  U  =  ( R  /.s  ( R ~QG  S
) )
quscrng.i  |-  I  =  (LIdeal `  R )
Assertion
Ref Expression
quscrng  |-  ( ( R  e.  CRing  /\  S  e.  I )  ->  U  e.  CRing )

Proof of Theorem quscrng
Dummy variables  u  v  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 crngring 13803 . . 3  |-  ( R  e.  CRing  ->  R  e.  Ring )
2 simpr 110 . . . 4  |-  ( ( R  e.  CRing  /\  S  e.  I )  ->  S  e.  I )
3 quscrng.i . . . . . 6  |-  I  =  (LIdeal `  R )
43crng2idl 14326 . . . . 5  |-  ( R  e.  CRing  ->  I  =  (2Ideal `  R ) )
54adantr 276 . . . 4  |-  ( ( R  e.  CRing  /\  S  e.  I )  ->  I  =  (2Ideal `  R )
)
62, 5eleqtrd 2284 . . 3  |-  ( ( R  e.  CRing  /\  S  e.  I )  ->  S  e.  (2Ideal `  R )
)
7 quscrng.u . . . 4  |-  U  =  ( R  /.s  ( R ~QG  S
) )
8 eqid 2205 . . . 4  |-  (2Ideal `  R )  =  (2Ideal `  R )
97, 8qusring 14322 . . 3  |-  ( ( R  e.  Ring  /\  S  e.  (2Ideal `  R )
)  ->  U  e.  Ring )
101, 6, 9syl2an2r 595 . 2  |-  ( ( R  e.  CRing  /\  S  e.  I )  ->  U  e.  Ring )
117a1i 9 . . . . . . 7  |-  ( ( R  e.  CRing  /\  S  e.  I )  ->  U  =  ( R  /.s  ( R ~QG  S ) ) )
12 eqidd 2206 . . . . . . 7  |-  ( ( R  e.  CRing  /\  S  e.  I )  ->  ( Base `  R )  =  ( Base `  R
) )
13 eqgex 13590 . . . . . . 7  |-  ( ( R  e.  CRing  /\  S  e.  I )  ->  ( R ~QG  S )  e.  _V )
141adantr 276 . . . . . . 7  |-  ( ( R  e.  CRing  /\  S  e.  I )  ->  R  e.  Ring )
1511, 12, 13, 14qusbas 13192 . . . . . 6  |-  ( ( R  e.  CRing  /\  S  e.  I )  ->  (
( Base `  R ) /. ( R ~QG  S ) )  =  ( Base `  U
) )
1615eleq2d 2275 . . . . 5  |-  ( ( R  e.  CRing  /\  S  e.  I )  ->  (
x  e.  ( (
Base `  R ) /. ( R ~QG  S ) )  <->  x  e.  ( Base `  U )
) )
1715eleq2d 2275 . . . . 5  |-  ( ( R  e.  CRing  /\  S  e.  I )  ->  (
y  e.  ( (
Base `  R ) /. ( R ~QG  S ) )  <->  y  e.  ( Base `  U )
) )
1816, 17anbi12d 473 . . . 4  |-  ( ( R  e.  CRing  /\  S  e.  I )  ->  (
( x  e.  ( ( Base `  R
) /. ( R ~QG  S ) )  /\  y  e.  ( ( Base `  R
) /. ( R ~QG  S ) ) )  <->  ( x  e.  ( Base `  U
)  /\  y  e.  ( Base `  U )
) ) )
19 eqid 2205 . . . . . 6  |-  ( (
Base `  R ) /. ( R ~QG  S ) )  =  ( ( Base `  R
) /. ( R ~QG  S ) )
20 oveq2 5954 . . . . . . 7  |-  ( [ u ] ( R ~QG  S )  =  y  -> 
( x ( .r
`  U ) [ u ] ( R ~QG  S ) )  =  ( x ( .r `  U ) y ) )
21 oveq1 5953 . . . . . . 7  |-  ( [ u ] ( R ~QG  S )  =  y  -> 
( [ u ]
( R ~QG  S ) ( .r
`  U ) x )  =  ( y ( .r `  U
) x ) )
2220, 21eqeq12d 2220 . . . . . 6  |-  ( [ u ] ( R ~QG  S )  =  y  -> 
( ( x ( .r `  U ) [ u ] ( R ~QG  S ) )  =  ( [ u ]
( R ~QG  S ) ( .r
`  U ) x )  <->  ( x ( .r `  U ) y )  =  ( y ( .r `  U ) x ) ) )
23 oveq1 5953 . . . . . . . . 9  |-  ( [ v ] ( R ~QG  S )  =  x  -> 
( [ v ] ( R ~QG  S ) ( .r
`  U ) [ u ] ( R ~QG  S ) )  =  ( x ( .r `  U ) [ u ] ( R ~QG  S ) ) )
24 oveq2 5954 . . . . . . . . 9  |-  ( [ v ] ( R ~QG  S )  =  x  -> 
( [ u ]
( R ~QG  S ) ( .r
`  U ) [ v ] ( R ~QG  S ) )  =  ( [ u ] ( R ~QG  S ) ( .r
`  U ) x ) )
2523, 24eqeq12d 2220 . . . . . . . 8  |-  ( [ v ] ( R ~QG  S )  =  x  -> 
( ( [ v ] ( R ~QG  S ) ( .r `  U
) [ u ]
( R ~QG  S ) )  =  ( [ u ]
( R ~QG  S ) ( .r
`  U ) [ v ] ( R ~QG  S ) )  <->  ( x
( .r `  U
) [ u ]
( R ~QG  S ) )  =  ( [ u ]
( R ~QG  S ) ( .r
`  U ) x ) ) )
26 eqid 2205 . . . . . . . . . . . 12  |-  ( Base `  R )  =  (
Base `  R )
27 eqid 2205 . . . . . . . . . . . 12  |-  ( .r
`  R )  =  ( .r `  R
)
2826, 27crngcom 13809 . . . . . . . . . . 11  |-  ( ( R  e.  CRing  /\  u  e.  ( Base `  R
)  /\  v  e.  ( Base `  R )
)  ->  ( u
( .r `  R
) v )  =  ( v ( .r
`  R ) u ) )
2928ad4ant134 1220 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
CRing  /\  S  e.  I
)  /\  u  e.  ( Base `  R )
)  /\  v  e.  ( Base `  R )
)  ->  ( u
( .r `  R
) v )  =  ( v ( .r
`  R ) u ) )
3029eceq1d 6658 . . . . . . . . 9  |-  ( ( ( ( R  e. 
CRing  /\  S  e.  I
)  /\  u  e.  ( Base `  R )
)  /\  v  e.  ( Base `  R )
)  ->  [ (
u ( .r `  R ) v ) ] ( R ~QG  S )  =  [ ( v ( .r `  R
) u ) ] ( R ~QG  S ) )
31 ringrng 13831 . . . . . . . . . . . . . 14  |-  ( R  e.  Ring  ->  R  e. Rng )
321, 31syl 14 . . . . . . . . . . . . 13  |-  ( R  e.  CRing  ->  R  e. Rng )
3332adantr 276 . . . . . . . . . . . 12  |-  ( ( R  e.  CRing  /\  S  e.  I )  ->  R  e. Rng )
343lidlsubg 14281 . . . . . . . . . . . . 13  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  S  e.  (SubGrp `  R )
)
351, 34sylan 283 . . . . . . . . . . . 12  |-  ( ( R  e.  CRing  /\  S  e.  I )  ->  S  e.  (SubGrp `  R )
)
3633, 6, 353jca 1180 . . . . . . . . . . 11  |-  ( ( R  e.  CRing  /\  S  e.  I )  ->  ( R  e. Rng  /\  S  e.  (2Ideal `  R )  /\  S  e.  (SubGrp `  R ) ) )
3736adantr 276 . . . . . . . . . 10  |-  ( ( ( R  e.  CRing  /\  S  e.  I )  /\  u  e.  (
Base `  R )
)  ->  ( R  e. Rng  /\  S  e.  (2Ideal `  R )  /\  S  e.  (SubGrp `  R )
) )
38 simpr 110 . . . . . . . . . . 11  |-  ( ( ( R  e.  CRing  /\  S  e.  I )  /\  u  e.  (
Base `  R )
)  ->  u  e.  ( Base `  R )
)
3938anim1i 340 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
CRing  /\  S  e.  I
)  /\  u  e.  ( Base `  R )
)  /\  v  e.  ( Base `  R )
)  ->  ( u  e.  ( Base `  R
)  /\  v  e.  ( Base `  R )
) )
40 eqid 2205 . . . . . . . . . . 11  |-  ( R ~QG  S )  =  ( R ~QG  S )
41 eqid 2205 . . . . . . . . . . 11  |-  ( .r
`  U )  =  ( .r `  U
)
4240, 7, 26, 27, 41qusmulrng 14327 . . . . . . . . . 10  |-  ( ( ( R  e. Rng  /\  S  e.  (2Ideal `  R
)  /\  S  e.  (SubGrp `  R ) )  /\  ( u  e.  ( Base `  R
)  /\  v  e.  ( Base `  R )
) )  ->  ( [ u ] ( R ~QG  S ) ( .r
`  U ) [ v ] ( R ~QG  S ) )  =  [
( u ( .r
`  R ) v ) ] ( R ~QG  S ) )
4337, 39, 42syl2an2r 595 . . . . . . . . 9  |-  ( ( ( ( R  e. 
CRing  /\  S  e.  I
)  /\  u  e.  ( Base `  R )
)  /\  v  e.  ( Base `  R )
)  ->  ( [
u ] ( R ~QG  S ) ( .r `  U ) [ v ] ( R ~QG  S ) )  =  [ ( u ( .r `  R ) v ) ] ( R ~QG  S ) )
4439ancomd 267 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
CRing  /\  S  e.  I
)  /\  u  e.  ( Base `  R )
)  /\  v  e.  ( Base `  R )
)  ->  ( v  e.  ( Base `  R
)  /\  u  e.  ( Base `  R )
) )
4540, 7, 26, 27, 41qusmulrng 14327 . . . . . . . . . 10  |-  ( ( ( R  e. Rng  /\  S  e.  (2Ideal `  R
)  /\  S  e.  (SubGrp `  R ) )  /\  ( v  e.  ( Base `  R
)  /\  u  e.  ( Base `  R )
) )  ->  ( [ v ] ( R ~QG  S ) ( .r
`  U ) [ u ] ( R ~QG  S ) )  =  [
( v ( .r
`  R ) u ) ] ( R ~QG  S ) )
4637, 44, 45syl2an2r 595 . . . . . . . . 9  |-  ( ( ( ( R  e. 
CRing  /\  S  e.  I
)  /\  u  e.  ( Base `  R )
)  /\  v  e.  ( Base `  R )
)  ->  ( [
v ] ( R ~QG  S ) ( .r `  U ) [ u ] ( R ~QG  S ) )  =  [ ( v ( .r `  R ) u ) ] ( R ~QG  S ) )
4730, 43, 463eqtr4rd 2249 . . . . . . . 8  |-  ( ( ( ( R  e. 
CRing  /\  S  e.  I
)  /\  u  e.  ( Base `  R )
)  /\  v  e.  ( Base `  R )
)  ->  ( [
v ] ( R ~QG  S ) ( .r `  U ) [ u ] ( R ~QG  S ) )  =  ( [ u ] ( R ~QG  S ) ( .r `  U ) [ v ] ( R ~QG  S ) ) )
4819, 25, 47ectocld 6690 . . . . . . 7  |-  ( ( ( ( R  e. 
CRing  /\  S  e.  I
)  /\  u  e.  ( Base `  R )
)  /\  x  e.  ( ( Base `  R
) /. ( R ~QG  S ) ) )  -> 
( x ( .r
`  U ) [ u ] ( R ~QG  S ) )  =  ( [ u ] ( R ~QG  S ) ( .r
`  U ) x ) )
4948an32s 568 . . . . . 6  |-  ( ( ( ( R  e. 
CRing  /\  S  e.  I
)  /\  x  e.  ( ( Base `  R
) /. ( R ~QG  S ) ) )  /\  u  e.  ( Base `  R ) )  -> 
( x ( .r
`  U ) [ u ] ( R ~QG  S ) )  =  ( [ u ] ( R ~QG  S ) ( .r
`  U ) x ) )
5019, 22, 49ectocld 6690 . . . . 5  |-  ( ( ( ( R  e. 
CRing  /\  S  e.  I
)  /\  x  e.  ( ( Base `  R
) /. ( R ~QG  S ) ) )  /\  y  e.  ( ( Base `  R ) /. ( R ~QG  S ) ) )  ->  ( x ( .r `  U ) y )  =  ( y ( .r `  U ) x ) )
5150expl 378 . . . 4  |-  ( ( R  e.  CRing  /\  S  e.  I )  ->  (
( x  e.  ( ( Base `  R
) /. ( R ~QG  S ) )  /\  y  e.  ( ( Base `  R
) /. ( R ~QG  S ) ) )  -> 
( x ( .r
`  U ) y )  =  ( y ( .r `  U
) x ) ) )
5218, 51sylbird 170 . . 3  |-  ( ( R  e.  CRing  /\  S  e.  I )  ->  (
( x  e.  (
Base `  U )  /\  y  e.  ( Base `  U ) )  ->  ( x ( .r `  U ) y )  =  ( y ( .r `  U ) x ) ) )
5352ralrimivv 2587 . 2  |-  ( ( R  e.  CRing  /\  S  e.  I )  ->  A. x  e.  ( Base `  U
) A. y  e.  ( Base `  U
) ( x ( .r `  U ) y )  =  ( y ( .r `  U ) x ) )
54 eqid 2205 . . 3  |-  ( Base `  U )  =  (
Base `  U )
5554, 41iscrng2 13810 . 2  |-  ( U  e.  CRing 
<->  ( U  e.  Ring  /\ 
A. x  e.  (
Base `  U ) A. y  e.  ( Base `  U ) ( x ( .r `  U ) y )  =  ( y ( .r `  U ) x ) ) )
5610, 53, 55sylanbrc 417 1  |-  ( ( R  e.  CRing  /\  S  e.  I )  ->  U  e.  CRing )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2176   A.wral 2484   _Vcvv 2772   ` cfv 5272  (class class class)co 5946   [cec 6620   /.cqs 6621   Basecbs 12865   .rcmulr 12943    /.s cqus 13165  SubGrpcsubg 13536   ~QG cqg 13538  Rngcrng 13727   Ringcrg 13791   CRingccrg 13792  LIdealclidl 14262  2Idealc2idl 14294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-addcom 8027  ax-addass 8029  ax-i2m1 8032  ax-0lt1 8033  ax-0id 8035  ax-rnegex 8036  ax-pre-ltirr 8039  ax-pre-lttrn 8041  ax-pre-ltadd 8043
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-tp 3641  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-tpos 6333  df-er 6622  df-ec 6624  df-qs 6628  df-pnf 8111  df-mnf 8112  df-ltxr 8114  df-inn 9039  df-2 9097  df-3 9098  df-4 9099  df-5 9100  df-6 9101  df-7 9102  df-8 9103  df-ndx 12868  df-slot 12869  df-base 12871  df-sets 12872  df-iress 12873  df-plusg 12955  df-mulr 12956  df-sca 12958  df-vsca 12959  df-ip 12960  df-0g 13123  df-iimas 13167  df-qus 13168  df-mgm 13221  df-sgrp 13267  df-mnd 13282  df-grp 13368  df-minusg 13369  df-sbg 13370  df-subg 13539  df-nsg 13540  df-eqg 13541  df-cmn 13655  df-abl 13656  df-mgp 13716  df-rng 13728  df-ur 13755  df-srg 13759  df-ring 13793  df-cring 13794  df-oppr 13863  df-subrg 14014  df-lmod 14084  df-lssm 14148  df-lsp 14182  df-sra 14230  df-rgmod 14231  df-lidl 14264  df-rsp 14265  df-2idl 14295
This theorem is referenced by:  zncrng2  14430
  Copyright terms: Public domain W3C validator