ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  quscrng Unicode version

Theorem quscrng 14029
Description: The quotient of a commutative ring by an ideal is a commutative ring. (Contributed by Mario Carneiro, 15-Jun-2015.) (Proof shortened by AV, 3-Apr-2025.)
Hypotheses
Ref Expression
quscrng.u  |-  U  =  ( R  /.s  ( R ~QG  S
) )
quscrng.i  |-  I  =  (LIdeal `  R )
Assertion
Ref Expression
quscrng  |-  ( ( R  e.  CRing  /\  S  e.  I )  ->  U  e.  CRing )

Proof of Theorem quscrng
Dummy variables  u  v  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 crngring 13504 . . 3  |-  ( R  e.  CRing  ->  R  e.  Ring )
2 simpr 110 . . . 4  |-  ( ( R  e.  CRing  /\  S  e.  I )  ->  S  e.  I )
3 quscrng.i . . . . . 6  |-  I  =  (LIdeal `  R )
43crng2idl 14027 . . . . 5  |-  ( R  e.  CRing  ->  I  =  (2Ideal `  R ) )
54adantr 276 . . . 4  |-  ( ( R  e.  CRing  /\  S  e.  I )  ->  I  =  (2Ideal `  R )
)
62, 5eleqtrd 2272 . . 3  |-  ( ( R  e.  CRing  /\  S  e.  I )  ->  S  e.  (2Ideal `  R )
)
7 quscrng.u . . . 4  |-  U  =  ( R  /.s  ( R ~QG  S
) )
8 eqid 2193 . . . 4  |-  (2Ideal `  R )  =  (2Ideal `  R )
97, 8qusring 14023 . . 3  |-  ( ( R  e.  Ring  /\  S  e.  (2Ideal `  R )
)  ->  U  e.  Ring )
101, 6, 9syl2an2r 595 . 2  |-  ( ( R  e.  CRing  /\  S  e.  I )  ->  U  e.  Ring )
117a1i 9 . . . . . . 7  |-  ( ( R  e.  CRing  /\  S  e.  I )  ->  U  =  ( R  /.s  ( R ~QG  S ) ) )
12 eqidd 2194 . . . . . . 7  |-  ( ( R  e.  CRing  /\  S  e.  I )  ->  ( Base `  R )  =  ( Base `  R
) )
13 eqgex 13291 . . . . . . 7  |-  ( ( R  e.  CRing  /\  S  e.  I )  ->  ( R ~QG  S )  e.  _V )
141adantr 276 . . . . . . 7  |-  ( ( R  e.  CRing  /\  S  e.  I )  ->  R  e.  Ring )
1511, 12, 13, 14qusbas 12910 . . . . . 6  |-  ( ( R  e.  CRing  /\  S  e.  I )  ->  (
( Base `  R ) /. ( R ~QG  S ) )  =  ( Base `  U
) )
1615eleq2d 2263 . . . . 5  |-  ( ( R  e.  CRing  /\  S  e.  I )  ->  (
x  e.  ( (
Base `  R ) /. ( R ~QG  S ) )  <->  x  e.  ( Base `  U )
) )
1715eleq2d 2263 . . . . 5  |-  ( ( R  e.  CRing  /\  S  e.  I )  ->  (
y  e.  ( (
Base `  R ) /. ( R ~QG  S ) )  <->  y  e.  ( Base `  U )
) )
1816, 17anbi12d 473 . . . 4  |-  ( ( R  e.  CRing  /\  S  e.  I )  ->  (
( x  e.  ( ( Base `  R
) /. ( R ~QG  S ) )  /\  y  e.  ( ( Base `  R
) /. ( R ~QG  S ) ) )  <->  ( x  e.  ( Base `  U
)  /\  y  e.  ( Base `  U )
) ) )
19 eqid 2193 . . . . . 6  |-  ( (
Base `  R ) /. ( R ~QG  S ) )  =  ( ( Base `  R
) /. ( R ~QG  S ) )
20 oveq2 5926 . . . . . . 7  |-  ( [ u ] ( R ~QG  S )  =  y  -> 
( x ( .r
`  U ) [ u ] ( R ~QG  S ) )  =  ( x ( .r `  U ) y ) )
21 oveq1 5925 . . . . . . 7  |-  ( [ u ] ( R ~QG  S )  =  y  -> 
( [ u ]
( R ~QG  S ) ( .r
`  U ) x )  =  ( y ( .r `  U
) x ) )
2220, 21eqeq12d 2208 . . . . . 6  |-  ( [ u ] ( R ~QG  S )  =  y  -> 
( ( x ( .r `  U ) [ u ] ( R ~QG  S ) )  =  ( [ u ]
( R ~QG  S ) ( .r
`  U ) x )  <->  ( x ( .r `  U ) y )  =  ( y ( .r `  U ) x ) ) )
23 oveq1 5925 . . . . . . . . 9  |-  ( [ v ] ( R ~QG  S )  =  x  -> 
( [ v ] ( R ~QG  S ) ( .r
`  U ) [ u ] ( R ~QG  S ) )  =  ( x ( .r `  U ) [ u ] ( R ~QG  S ) ) )
24 oveq2 5926 . . . . . . . . 9  |-  ( [ v ] ( R ~QG  S )  =  x  -> 
( [ u ]
( R ~QG  S ) ( .r
`  U ) [ v ] ( R ~QG  S ) )  =  ( [ u ] ( R ~QG  S ) ( .r
`  U ) x ) )
2523, 24eqeq12d 2208 . . . . . . . 8  |-  ( [ v ] ( R ~QG  S )  =  x  -> 
( ( [ v ] ( R ~QG  S ) ( .r `  U
) [ u ]
( R ~QG  S ) )  =  ( [ u ]
( R ~QG  S ) ( .r
`  U ) [ v ] ( R ~QG  S ) )  <->  ( x
( .r `  U
) [ u ]
( R ~QG  S ) )  =  ( [ u ]
( R ~QG  S ) ( .r
`  U ) x ) ) )
26 eqid 2193 . . . . . . . . . . . 12  |-  ( Base `  R )  =  (
Base `  R )
27 eqid 2193 . . . . . . . . . . . 12  |-  ( .r
`  R )  =  ( .r `  R
)
2826, 27crngcom 13510 . . . . . . . . . . 11  |-  ( ( R  e.  CRing  /\  u  e.  ( Base `  R
)  /\  v  e.  ( Base `  R )
)  ->  ( u
( .r `  R
) v )  =  ( v ( .r
`  R ) u ) )
2928ad4ant134 1219 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
CRing  /\  S  e.  I
)  /\  u  e.  ( Base `  R )
)  /\  v  e.  ( Base `  R )
)  ->  ( u
( .r `  R
) v )  =  ( v ( .r
`  R ) u ) )
3029eceq1d 6623 . . . . . . . . 9  |-  ( ( ( ( R  e. 
CRing  /\  S  e.  I
)  /\  u  e.  ( Base `  R )
)  /\  v  e.  ( Base `  R )
)  ->  [ (
u ( .r `  R ) v ) ] ( R ~QG  S )  =  [ ( v ( .r `  R
) u ) ] ( R ~QG  S ) )
31 ringrng 13532 . . . . . . . . . . . . . 14  |-  ( R  e.  Ring  ->  R  e. Rng )
321, 31syl 14 . . . . . . . . . . . . 13  |-  ( R  e.  CRing  ->  R  e. Rng )
3332adantr 276 . . . . . . . . . . . 12  |-  ( ( R  e.  CRing  /\  S  e.  I )  ->  R  e. Rng )
343lidlsubg 13982 . . . . . . . . . . . . 13  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  S  e.  (SubGrp `  R )
)
351, 34sylan 283 . . . . . . . . . . . 12  |-  ( ( R  e.  CRing  /\  S  e.  I )  ->  S  e.  (SubGrp `  R )
)
3633, 6, 353jca 1179 . . . . . . . . . . 11  |-  ( ( R  e.  CRing  /\  S  e.  I )  ->  ( R  e. Rng  /\  S  e.  (2Ideal `  R )  /\  S  e.  (SubGrp `  R ) ) )
3736adantr 276 . . . . . . . . . 10  |-  ( ( ( R  e.  CRing  /\  S  e.  I )  /\  u  e.  (
Base `  R )
)  ->  ( R  e. Rng  /\  S  e.  (2Ideal `  R )  /\  S  e.  (SubGrp `  R )
) )
38 simpr 110 . . . . . . . . . . 11  |-  ( ( ( R  e.  CRing  /\  S  e.  I )  /\  u  e.  (
Base `  R )
)  ->  u  e.  ( Base `  R )
)
3938anim1i 340 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
CRing  /\  S  e.  I
)  /\  u  e.  ( Base `  R )
)  /\  v  e.  ( Base `  R )
)  ->  ( u  e.  ( Base `  R
)  /\  v  e.  ( Base `  R )
) )
40 eqid 2193 . . . . . . . . . . 11  |-  ( R ~QG  S )  =  ( R ~QG  S )
41 eqid 2193 . . . . . . . . . . 11  |-  ( .r
`  U )  =  ( .r `  U
)
4240, 7, 26, 27, 41qusmulrng 14028 . . . . . . . . . 10  |-  ( ( ( R  e. Rng  /\  S  e.  (2Ideal `  R
)  /\  S  e.  (SubGrp `  R ) )  /\  ( u  e.  ( Base `  R
)  /\  v  e.  ( Base `  R )
) )  ->  ( [ u ] ( R ~QG  S ) ( .r
`  U ) [ v ] ( R ~QG  S ) )  =  [
( u ( .r
`  R ) v ) ] ( R ~QG  S ) )
4337, 39, 42syl2an2r 595 . . . . . . . . 9  |-  ( ( ( ( R  e. 
CRing  /\  S  e.  I
)  /\  u  e.  ( Base `  R )
)  /\  v  e.  ( Base `  R )
)  ->  ( [
u ] ( R ~QG  S ) ( .r `  U ) [ v ] ( R ~QG  S ) )  =  [ ( u ( .r `  R ) v ) ] ( R ~QG  S ) )
4439ancomd 267 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
CRing  /\  S  e.  I
)  /\  u  e.  ( Base `  R )
)  /\  v  e.  ( Base `  R )
)  ->  ( v  e.  ( Base `  R
)  /\  u  e.  ( Base `  R )
) )
4540, 7, 26, 27, 41qusmulrng 14028 . . . . . . . . . 10  |-  ( ( ( R  e. Rng  /\  S  e.  (2Ideal `  R
)  /\  S  e.  (SubGrp `  R ) )  /\  ( v  e.  ( Base `  R
)  /\  u  e.  ( Base `  R )
) )  ->  ( [ v ] ( R ~QG  S ) ( .r
`  U ) [ u ] ( R ~QG  S ) )  =  [
( v ( .r
`  R ) u ) ] ( R ~QG  S ) )
4637, 44, 45syl2an2r 595 . . . . . . . . 9  |-  ( ( ( ( R  e. 
CRing  /\  S  e.  I
)  /\  u  e.  ( Base `  R )
)  /\  v  e.  ( Base `  R )
)  ->  ( [
v ] ( R ~QG  S ) ( .r `  U ) [ u ] ( R ~QG  S ) )  =  [ ( v ( .r `  R ) u ) ] ( R ~QG  S ) )
4730, 43, 463eqtr4rd 2237 . . . . . . . 8  |-  ( ( ( ( R  e. 
CRing  /\  S  e.  I
)  /\  u  e.  ( Base `  R )
)  /\  v  e.  ( Base `  R )
)  ->  ( [
v ] ( R ~QG  S ) ( .r `  U ) [ u ] ( R ~QG  S ) )  =  ( [ u ] ( R ~QG  S ) ( .r `  U ) [ v ] ( R ~QG  S ) ) )
4819, 25, 47ectocld 6655 . . . . . . 7  |-  ( ( ( ( R  e. 
CRing  /\  S  e.  I
)  /\  u  e.  ( Base `  R )
)  /\  x  e.  ( ( Base `  R
) /. ( R ~QG  S ) ) )  -> 
( x ( .r
`  U ) [ u ] ( R ~QG  S ) )  =  ( [ u ] ( R ~QG  S ) ( .r
`  U ) x ) )
4948an32s 568 . . . . . 6  |-  ( ( ( ( R  e. 
CRing  /\  S  e.  I
)  /\  x  e.  ( ( Base `  R
) /. ( R ~QG  S ) ) )  /\  u  e.  ( Base `  R ) )  -> 
( x ( .r
`  U ) [ u ] ( R ~QG  S ) )  =  ( [ u ] ( R ~QG  S ) ( .r
`  U ) x ) )
5019, 22, 49ectocld 6655 . . . . 5  |-  ( ( ( ( R  e. 
CRing  /\  S  e.  I
)  /\  x  e.  ( ( Base `  R
) /. ( R ~QG  S ) ) )  /\  y  e.  ( ( Base `  R ) /. ( R ~QG  S ) ) )  ->  ( x ( .r `  U ) y )  =  ( y ( .r `  U ) x ) )
5150expl 378 . . . 4  |-  ( ( R  e.  CRing  /\  S  e.  I )  ->  (
( x  e.  ( ( Base `  R
) /. ( R ~QG  S ) )  /\  y  e.  ( ( Base `  R
) /. ( R ~QG  S ) ) )  -> 
( x ( .r
`  U ) y )  =  ( y ( .r `  U
) x ) ) )
5218, 51sylbird 170 . . 3  |-  ( ( R  e.  CRing  /\  S  e.  I )  ->  (
( x  e.  (
Base `  U )  /\  y  e.  ( Base `  U ) )  ->  ( x ( .r `  U ) y )  =  ( y ( .r `  U ) x ) ) )
5352ralrimivv 2575 . 2  |-  ( ( R  e.  CRing  /\  S  e.  I )  ->  A. x  e.  ( Base `  U
) A. y  e.  ( Base `  U
) ( x ( .r `  U ) y )  =  ( y ( .r `  U ) x ) )
54 eqid 2193 . . 3  |-  ( Base `  U )  =  (
Base `  U )
5554, 41iscrng2 13511 . 2  |-  ( U  e.  CRing 
<->  ( U  e.  Ring  /\ 
A. x  e.  (
Base `  U ) A. y  e.  ( Base `  U ) ( x ( .r `  U ) y )  =  ( y ( .r `  U ) x ) ) )
5610, 53, 55sylanbrc 417 1  |-  ( ( R  e.  CRing  /\  S  e.  I )  ->  U  e.  CRing )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2164   A.wral 2472   _Vcvv 2760   ` cfv 5254  (class class class)co 5918   [cec 6585   /.cqs 6586   Basecbs 12618   .rcmulr 12696    /.s cqus 12883  SubGrpcsubg 13237   ~QG cqg 13239  Rngcrng 13428   Ringcrg 13492   CRingccrg 13493  LIdealclidl 13963  2Idealc2idl 13995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-tp 3626  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-tpos 6298  df-er 6587  df-ec 6589  df-qs 6593  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-5 9044  df-6 9045  df-7 9046  df-8 9047  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-iress 12626  df-plusg 12708  df-mulr 12709  df-sca 12711  df-vsca 12712  df-ip 12713  df-0g 12869  df-iimas 12885  df-qus 12886  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-minusg 13076  df-sbg 13077  df-subg 13240  df-nsg 13241  df-eqg 13242  df-cmn 13356  df-abl 13357  df-mgp 13417  df-rng 13429  df-ur 13456  df-srg 13460  df-ring 13494  df-cring 13495  df-oppr 13564  df-subrg 13715  df-lmod 13785  df-lssm 13849  df-lsp 13883  df-sra 13931  df-rgmod 13932  df-lidl 13965  df-rsp 13966  df-2idl 13996
This theorem is referenced by:  zncrng2  14123
  Copyright terms: Public domain W3C validator