| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > quscrng | Unicode version | ||
| Description: The quotient of a commutative ring by an ideal is a commutative ring. (Contributed by Mario Carneiro, 15-Jun-2015.) (Proof shortened by AV, 3-Apr-2025.) |
| Ref | Expression |
|---|---|
| quscrng.u |
|
| quscrng.i |
|
| Ref | Expression |
|---|---|
| quscrng |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crngring 13640 |
. . 3
| |
| 2 | simpr 110 |
. . . 4
| |
| 3 | quscrng.i |
. . . . . 6
| |
| 4 | 3 | crng2idl 14163 |
. . . . 5
|
| 5 | 4 | adantr 276 |
. . . 4
|
| 6 | 2, 5 | eleqtrd 2275 |
. . 3
|
| 7 | quscrng.u |
. . . 4
| |
| 8 | eqid 2196 |
. . . 4
| |
| 9 | 7, 8 | qusring 14159 |
. . 3
|
| 10 | 1, 6, 9 | syl2an2r 595 |
. 2
|
| 11 | 7 | a1i 9 |
. . . . . . 7
|
| 12 | eqidd 2197 |
. . . . . . 7
| |
| 13 | eqgex 13427 |
. . . . . . 7
| |
| 14 | 1 | adantr 276 |
. . . . . . 7
|
| 15 | 11, 12, 13, 14 | qusbas 13029 |
. . . . . 6
|
| 16 | 15 | eleq2d 2266 |
. . . . 5
|
| 17 | 15 | eleq2d 2266 |
. . . . 5
|
| 18 | 16, 17 | anbi12d 473 |
. . . 4
|
| 19 | eqid 2196 |
. . . . . 6
| |
| 20 | oveq2 5933 |
. . . . . . 7
| |
| 21 | oveq1 5932 |
. . . . . . 7
| |
| 22 | 20, 21 | eqeq12d 2211 |
. . . . . 6
|
| 23 | oveq1 5932 |
. . . . . . . . 9
| |
| 24 | oveq2 5933 |
. . . . . . . . 9
| |
| 25 | 23, 24 | eqeq12d 2211 |
. . . . . . . 8
|
| 26 | eqid 2196 |
. . . . . . . . . . . 12
| |
| 27 | eqid 2196 |
. . . . . . . . . . . 12
| |
| 28 | 26, 27 | crngcom 13646 |
. . . . . . . . . . 11
|
| 29 | 28 | ad4ant134 1219 |
. . . . . . . . . 10
|
| 30 | 29 | eceq1d 6637 |
. . . . . . . . 9
|
| 31 | ringrng 13668 |
. . . . . . . . . . . . . 14
| |
| 32 | 1, 31 | syl 14 |
. . . . . . . . . . . . 13
|
| 33 | 32 | adantr 276 |
. . . . . . . . . . . 12
|
| 34 | 3 | lidlsubg 14118 |
. . . . . . . . . . . . 13
|
| 35 | 1, 34 | sylan 283 |
. . . . . . . . . . . 12
|
| 36 | 33, 6, 35 | 3jca 1179 |
. . . . . . . . . . 11
|
| 37 | 36 | adantr 276 |
. . . . . . . . . 10
|
| 38 | simpr 110 |
. . . . . . . . . . 11
| |
| 39 | 38 | anim1i 340 |
. . . . . . . . . 10
|
| 40 | eqid 2196 |
. . . . . . . . . . 11
| |
| 41 | eqid 2196 |
. . . . . . . . . . 11
| |
| 42 | 40, 7, 26, 27, 41 | qusmulrng 14164 |
. . . . . . . . . 10
|
| 43 | 37, 39, 42 | syl2an2r 595 |
. . . . . . . . 9
|
| 44 | 39 | ancomd 267 |
. . . . . . . . . 10
|
| 45 | 40, 7, 26, 27, 41 | qusmulrng 14164 |
. . . . . . . . . 10
|
| 46 | 37, 44, 45 | syl2an2r 595 |
. . . . . . . . 9
|
| 47 | 30, 43, 46 | 3eqtr4rd 2240 |
. . . . . . . 8
|
| 48 | 19, 25, 47 | ectocld 6669 |
. . . . . . 7
|
| 49 | 48 | an32s 568 |
. . . . . 6
|
| 50 | 19, 22, 49 | ectocld 6669 |
. . . . 5
|
| 51 | 50 | expl 378 |
. . . 4
|
| 52 | 18, 51 | sylbird 170 |
. . 3
|
| 53 | 52 | ralrimivv 2578 |
. 2
|
| 54 | eqid 2196 |
. . 3
| |
| 55 | 54, 41 | iscrng2 13647 |
. 2
|
| 56 | 10, 53, 55 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-pre-ltirr 8008 ax-pre-lttrn 8010 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-tp 3631 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-tpos 6312 df-er 6601 df-ec 6603 df-qs 6607 df-pnf 8080 df-mnf 8081 df-ltxr 8083 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-5 9069 df-6 9070 df-7 9071 df-8 9072 df-ndx 12706 df-slot 12707 df-base 12709 df-sets 12710 df-iress 12711 df-plusg 12793 df-mulr 12794 df-sca 12796 df-vsca 12797 df-ip 12798 df-0g 12960 df-iimas 13004 df-qus 13005 df-mgm 13058 df-sgrp 13104 df-mnd 13119 df-grp 13205 df-minusg 13206 df-sbg 13207 df-subg 13376 df-nsg 13377 df-eqg 13378 df-cmn 13492 df-abl 13493 df-mgp 13553 df-rng 13565 df-ur 13592 df-srg 13596 df-ring 13630 df-cring 13631 df-oppr 13700 df-subrg 13851 df-lmod 13921 df-lssm 13985 df-lsp 14019 df-sra 14067 df-rgmod 14068 df-lidl 14101 df-rsp 14102 df-2idl 14132 |
| This theorem is referenced by: zncrng2 14267 |
| Copyright terms: Public domain | W3C validator |