ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  quscrng Unicode version

Theorem quscrng 14410
Description: The quotient of a commutative ring by an ideal is a commutative ring. (Contributed by Mario Carneiro, 15-Jun-2015.) (Proof shortened by AV, 3-Apr-2025.)
Hypotheses
Ref Expression
quscrng.u  |-  U  =  ( R  /.s  ( R ~QG  S
) )
quscrng.i  |-  I  =  (LIdeal `  R )
Assertion
Ref Expression
quscrng  |-  ( ( R  e.  CRing  /\  S  e.  I )  ->  U  e.  CRing )

Proof of Theorem quscrng
Dummy variables  u  v  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 crngring 13885 . . 3  |-  ( R  e.  CRing  ->  R  e.  Ring )
2 simpr 110 . . . 4  |-  ( ( R  e.  CRing  /\  S  e.  I )  ->  S  e.  I )
3 quscrng.i . . . . . 6  |-  I  =  (LIdeal `  R )
43crng2idl 14408 . . . . 5  |-  ( R  e.  CRing  ->  I  =  (2Ideal `  R ) )
54adantr 276 . . . 4  |-  ( ( R  e.  CRing  /\  S  e.  I )  ->  I  =  (2Ideal `  R )
)
62, 5eleqtrd 2286 . . 3  |-  ( ( R  e.  CRing  /\  S  e.  I )  ->  S  e.  (2Ideal `  R )
)
7 quscrng.u . . . 4  |-  U  =  ( R  /.s  ( R ~QG  S
) )
8 eqid 2207 . . . 4  |-  (2Ideal `  R )  =  (2Ideal `  R )
97, 8qusring 14404 . . 3  |-  ( ( R  e.  Ring  /\  S  e.  (2Ideal `  R )
)  ->  U  e.  Ring )
101, 6, 9syl2an2r 595 . 2  |-  ( ( R  e.  CRing  /\  S  e.  I )  ->  U  e.  Ring )
117a1i 9 . . . . . . 7  |-  ( ( R  e.  CRing  /\  S  e.  I )  ->  U  =  ( R  /.s  ( R ~QG  S ) ) )
12 eqidd 2208 . . . . . . 7  |-  ( ( R  e.  CRing  /\  S  e.  I )  ->  ( Base `  R )  =  ( Base `  R
) )
13 eqgex 13672 . . . . . . 7  |-  ( ( R  e.  CRing  /\  S  e.  I )  ->  ( R ~QG  S )  e.  _V )
141adantr 276 . . . . . . 7  |-  ( ( R  e.  CRing  /\  S  e.  I )  ->  R  e.  Ring )
1511, 12, 13, 14qusbas 13274 . . . . . 6  |-  ( ( R  e.  CRing  /\  S  e.  I )  ->  (
( Base `  R ) /. ( R ~QG  S ) )  =  ( Base `  U
) )
1615eleq2d 2277 . . . . 5  |-  ( ( R  e.  CRing  /\  S  e.  I )  ->  (
x  e.  ( (
Base `  R ) /. ( R ~QG  S ) )  <->  x  e.  ( Base `  U )
) )
1715eleq2d 2277 . . . . 5  |-  ( ( R  e.  CRing  /\  S  e.  I )  ->  (
y  e.  ( (
Base `  R ) /. ( R ~QG  S ) )  <->  y  e.  ( Base `  U )
) )
1816, 17anbi12d 473 . . . 4  |-  ( ( R  e.  CRing  /\  S  e.  I )  ->  (
( x  e.  ( ( Base `  R
) /. ( R ~QG  S ) )  /\  y  e.  ( ( Base `  R
) /. ( R ~QG  S ) ) )  <->  ( x  e.  ( Base `  U
)  /\  y  e.  ( Base `  U )
) ) )
19 eqid 2207 . . . . . 6  |-  ( (
Base `  R ) /. ( R ~QG  S ) )  =  ( ( Base `  R
) /. ( R ~QG  S ) )
20 oveq2 5975 . . . . . . 7  |-  ( [ u ] ( R ~QG  S )  =  y  -> 
( x ( .r
`  U ) [ u ] ( R ~QG  S ) )  =  ( x ( .r `  U ) y ) )
21 oveq1 5974 . . . . . . 7  |-  ( [ u ] ( R ~QG  S )  =  y  -> 
( [ u ]
( R ~QG  S ) ( .r
`  U ) x )  =  ( y ( .r `  U
) x ) )
2220, 21eqeq12d 2222 . . . . . 6  |-  ( [ u ] ( R ~QG  S )  =  y  -> 
( ( x ( .r `  U ) [ u ] ( R ~QG  S ) )  =  ( [ u ]
( R ~QG  S ) ( .r
`  U ) x )  <->  ( x ( .r `  U ) y )  =  ( y ( .r `  U ) x ) ) )
23 oveq1 5974 . . . . . . . . 9  |-  ( [ v ] ( R ~QG  S )  =  x  -> 
( [ v ] ( R ~QG  S ) ( .r
`  U ) [ u ] ( R ~QG  S ) )  =  ( x ( .r `  U ) [ u ] ( R ~QG  S ) ) )
24 oveq2 5975 . . . . . . . . 9  |-  ( [ v ] ( R ~QG  S )  =  x  -> 
( [ u ]
( R ~QG  S ) ( .r
`  U ) [ v ] ( R ~QG  S ) )  =  ( [ u ] ( R ~QG  S ) ( .r
`  U ) x ) )
2523, 24eqeq12d 2222 . . . . . . . 8  |-  ( [ v ] ( R ~QG  S )  =  x  -> 
( ( [ v ] ( R ~QG  S ) ( .r `  U
) [ u ]
( R ~QG  S ) )  =  ( [ u ]
( R ~QG  S ) ( .r
`  U ) [ v ] ( R ~QG  S ) )  <->  ( x
( .r `  U
) [ u ]
( R ~QG  S ) )  =  ( [ u ]
( R ~QG  S ) ( .r
`  U ) x ) ) )
26 eqid 2207 . . . . . . . . . . . 12  |-  ( Base `  R )  =  (
Base `  R )
27 eqid 2207 . . . . . . . . . . . 12  |-  ( .r
`  R )  =  ( .r `  R
)
2826, 27crngcom 13891 . . . . . . . . . . 11  |-  ( ( R  e.  CRing  /\  u  e.  ( Base `  R
)  /\  v  e.  ( Base `  R )
)  ->  ( u
( .r `  R
) v )  =  ( v ( .r
`  R ) u ) )
2928ad4ant134 1220 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
CRing  /\  S  e.  I
)  /\  u  e.  ( Base `  R )
)  /\  v  e.  ( Base `  R )
)  ->  ( u
( .r `  R
) v )  =  ( v ( .r
`  R ) u ) )
3029eceq1d 6679 . . . . . . . . 9  |-  ( ( ( ( R  e. 
CRing  /\  S  e.  I
)  /\  u  e.  ( Base `  R )
)  /\  v  e.  ( Base `  R )
)  ->  [ (
u ( .r `  R ) v ) ] ( R ~QG  S )  =  [ ( v ( .r `  R
) u ) ] ( R ~QG  S ) )
31 ringrng 13913 . . . . . . . . . . . . . 14  |-  ( R  e.  Ring  ->  R  e. Rng )
321, 31syl 14 . . . . . . . . . . . . 13  |-  ( R  e.  CRing  ->  R  e. Rng )
3332adantr 276 . . . . . . . . . . . 12  |-  ( ( R  e.  CRing  /\  S  e.  I )  ->  R  e. Rng )
343lidlsubg 14363 . . . . . . . . . . . . 13  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  S  e.  (SubGrp `  R )
)
351, 34sylan 283 . . . . . . . . . . . 12  |-  ( ( R  e.  CRing  /\  S  e.  I )  ->  S  e.  (SubGrp `  R )
)
3633, 6, 353jca 1180 . . . . . . . . . . 11  |-  ( ( R  e.  CRing  /\  S  e.  I )  ->  ( R  e. Rng  /\  S  e.  (2Ideal `  R )  /\  S  e.  (SubGrp `  R ) ) )
3736adantr 276 . . . . . . . . . 10  |-  ( ( ( R  e.  CRing  /\  S  e.  I )  /\  u  e.  (
Base `  R )
)  ->  ( R  e. Rng  /\  S  e.  (2Ideal `  R )  /\  S  e.  (SubGrp `  R )
) )
38 simpr 110 . . . . . . . . . . 11  |-  ( ( ( R  e.  CRing  /\  S  e.  I )  /\  u  e.  (
Base `  R )
)  ->  u  e.  ( Base `  R )
)
3938anim1i 340 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
CRing  /\  S  e.  I
)  /\  u  e.  ( Base `  R )
)  /\  v  e.  ( Base `  R )
)  ->  ( u  e.  ( Base `  R
)  /\  v  e.  ( Base `  R )
) )
40 eqid 2207 . . . . . . . . . . 11  |-  ( R ~QG  S )  =  ( R ~QG  S )
41 eqid 2207 . . . . . . . . . . 11  |-  ( .r
`  U )  =  ( .r `  U
)
4240, 7, 26, 27, 41qusmulrng 14409 . . . . . . . . . 10  |-  ( ( ( R  e. Rng  /\  S  e.  (2Ideal `  R
)  /\  S  e.  (SubGrp `  R ) )  /\  ( u  e.  ( Base `  R
)  /\  v  e.  ( Base `  R )
) )  ->  ( [ u ] ( R ~QG  S ) ( .r
`  U ) [ v ] ( R ~QG  S ) )  =  [
( u ( .r
`  R ) v ) ] ( R ~QG  S ) )
4337, 39, 42syl2an2r 595 . . . . . . . . 9  |-  ( ( ( ( R  e. 
CRing  /\  S  e.  I
)  /\  u  e.  ( Base `  R )
)  /\  v  e.  ( Base `  R )
)  ->  ( [
u ] ( R ~QG  S ) ( .r `  U ) [ v ] ( R ~QG  S ) )  =  [ ( u ( .r `  R ) v ) ] ( R ~QG  S ) )
4439ancomd 267 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
CRing  /\  S  e.  I
)  /\  u  e.  ( Base `  R )
)  /\  v  e.  ( Base `  R )
)  ->  ( v  e.  ( Base `  R
)  /\  u  e.  ( Base `  R )
) )
4540, 7, 26, 27, 41qusmulrng 14409 . . . . . . . . . 10  |-  ( ( ( R  e. Rng  /\  S  e.  (2Ideal `  R
)  /\  S  e.  (SubGrp `  R ) )  /\  ( v  e.  ( Base `  R
)  /\  u  e.  ( Base `  R )
) )  ->  ( [ v ] ( R ~QG  S ) ( .r
`  U ) [ u ] ( R ~QG  S ) )  =  [
( v ( .r
`  R ) u ) ] ( R ~QG  S ) )
4637, 44, 45syl2an2r 595 . . . . . . . . 9  |-  ( ( ( ( R  e. 
CRing  /\  S  e.  I
)  /\  u  e.  ( Base `  R )
)  /\  v  e.  ( Base `  R )
)  ->  ( [
v ] ( R ~QG  S ) ( .r `  U ) [ u ] ( R ~QG  S ) )  =  [ ( v ( .r `  R ) u ) ] ( R ~QG  S ) )
4730, 43, 463eqtr4rd 2251 . . . . . . . 8  |-  ( ( ( ( R  e. 
CRing  /\  S  e.  I
)  /\  u  e.  ( Base `  R )
)  /\  v  e.  ( Base `  R )
)  ->  ( [
v ] ( R ~QG  S ) ( .r `  U ) [ u ] ( R ~QG  S ) )  =  ( [ u ] ( R ~QG  S ) ( .r `  U ) [ v ] ( R ~QG  S ) ) )
4819, 25, 47ectocld 6711 . . . . . . 7  |-  ( ( ( ( R  e. 
CRing  /\  S  e.  I
)  /\  u  e.  ( Base `  R )
)  /\  x  e.  ( ( Base `  R
) /. ( R ~QG  S ) ) )  -> 
( x ( .r
`  U ) [ u ] ( R ~QG  S ) )  =  ( [ u ] ( R ~QG  S ) ( .r
`  U ) x ) )
4948an32s 568 . . . . . 6  |-  ( ( ( ( R  e. 
CRing  /\  S  e.  I
)  /\  x  e.  ( ( Base `  R
) /. ( R ~QG  S ) ) )  /\  u  e.  ( Base `  R ) )  -> 
( x ( .r
`  U ) [ u ] ( R ~QG  S ) )  =  ( [ u ] ( R ~QG  S ) ( .r
`  U ) x ) )
5019, 22, 49ectocld 6711 . . . . 5  |-  ( ( ( ( R  e. 
CRing  /\  S  e.  I
)  /\  x  e.  ( ( Base `  R
) /. ( R ~QG  S ) ) )  /\  y  e.  ( ( Base `  R ) /. ( R ~QG  S ) ) )  ->  ( x ( .r `  U ) y )  =  ( y ( .r `  U ) x ) )
5150expl 378 . . . 4  |-  ( ( R  e.  CRing  /\  S  e.  I )  ->  (
( x  e.  ( ( Base `  R
) /. ( R ~QG  S ) )  /\  y  e.  ( ( Base `  R
) /. ( R ~QG  S ) ) )  -> 
( x ( .r
`  U ) y )  =  ( y ( .r `  U
) x ) ) )
5218, 51sylbird 170 . . 3  |-  ( ( R  e.  CRing  /\  S  e.  I )  ->  (
( x  e.  (
Base `  U )  /\  y  e.  ( Base `  U ) )  ->  ( x ( .r `  U ) y )  =  ( y ( .r `  U ) x ) ) )
5352ralrimivv 2589 . 2  |-  ( ( R  e.  CRing  /\  S  e.  I )  ->  A. x  e.  ( Base `  U
) A. y  e.  ( Base `  U
) ( x ( .r `  U ) y )  =  ( y ( .r `  U ) x ) )
54 eqid 2207 . . 3  |-  ( Base `  U )  =  (
Base `  U )
5554, 41iscrng2 13892 . 2  |-  ( U  e.  CRing 
<->  ( U  e.  Ring  /\ 
A. x  e.  (
Base `  U ) A. y  e.  ( Base `  U ) ( x ( .r `  U ) y )  =  ( y ( .r `  U ) x ) ) )
5610, 53, 55sylanbrc 417 1  |-  ( ( R  e.  CRing  /\  S  e.  I )  ->  U  e.  CRing )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2178   A.wral 2486   _Vcvv 2776   ` cfv 5290  (class class class)co 5967   [cec 6641   /.cqs 6642   Basecbs 12947   .rcmulr 13025    /.s cqus 13247  SubGrpcsubg 13618   ~QG cqg 13620  Rngcrng 13809   Ringcrg 13873   CRingccrg 13874  LIdealclidl 14344  2Idealc2idl 14376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-pre-ltirr 8072  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-tp 3651  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-tpos 6354  df-er 6643  df-ec 6645  df-qs 6649  df-pnf 8144  df-mnf 8145  df-ltxr 8147  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-5 9133  df-6 9134  df-7 9135  df-8 9136  df-ndx 12950  df-slot 12951  df-base 12953  df-sets 12954  df-iress 12955  df-plusg 13037  df-mulr 13038  df-sca 13040  df-vsca 13041  df-ip 13042  df-0g 13205  df-iimas 13249  df-qus 13250  df-mgm 13303  df-sgrp 13349  df-mnd 13364  df-grp 13450  df-minusg 13451  df-sbg 13452  df-subg 13621  df-nsg 13622  df-eqg 13623  df-cmn 13737  df-abl 13738  df-mgp 13798  df-rng 13810  df-ur 13837  df-srg 13841  df-ring 13875  df-cring 13876  df-oppr 13945  df-subrg 14096  df-lmod 14166  df-lssm 14230  df-lsp 14264  df-sra 14312  df-rgmod 14313  df-lidl 14346  df-rsp 14347  df-2idl 14377
This theorem is referenced by:  zncrng2  14512
  Copyright terms: Public domain W3C validator