| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > quscrng | Unicode version | ||
| Description: The quotient of a commutative ring by an ideal is a commutative ring. (Contributed by Mario Carneiro, 15-Jun-2015.) (Proof shortened by AV, 3-Apr-2025.) | 
| Ref | Expression | 
|---|---|
| quscrng.u | 
 | 
| quscrng.i | 
 | 
| Ref | Expression | 
|---|---|
| quscrng | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | crngring 13564 | 
. . 3
 | |
| 2 | simpr 110 | 
. . . 4
 | |
| 3 | quscrng.i | 
. . . . . 6
 | |
| 4 | 3 | crng2idl 14087 | 
. . . . 5
 | 
| 5 | 4 | adantr 276 | 
. . . 4
 | 
| 6 | 2, 5 | eleqtrd 2275 | 
. . 3
 | 
| 7 | quscrng.u | 
. . . 4
 | |
| 8 | eqid 2196 | 
. . . 4
 | |
| 9 | 7, 8 | qusring 14083 | 
. . 3
 | 
| 10 | 1, 6, 9 | syl2an2r 595 | 
. 2
 | 
| 11 | 7 | a1i 9 | 
. . . . . . 7
 | 
| 12 | eqidd 2197 | 
. . . . . . 7
 | |
| 13 | eqgex 13351 | 
. . . . . . 7
 | |
| 14 | 1 | adantr 276 | 
. . . . . . 7
 | 
| 15 | 11, 12, 13, 14 | qusbas 12970 | 
. . . . . 6
 | 
| 16 | 15 | eleq2d 2266 | 
. . . . 5
 | 
| 17 | 15 | eleq2d 2266 | 
. . . . 5
 | 
| 18 | 16, 17 | anbi12d 473 | 
. . . 4
 | 
| 19 | eqid 2196 | 
. . . . . 6
 | |
| 20 | oveq2 5930 | 
. . . . . . 7
 | |
| 21 | oveq1 5929 | 
. . . . . . 7
 | |
| 22 | 20, 21 | eqeq12d 2211 | 
. . . . . 6
 | 
| 23 | oveq1 5929 | 
. . . . . . . . 9
 | |
| 24 | oveq2 5930 | 
. . . . . . . . 9
 | |
| 25 | 23, 24 | eqeq12d 2211 | 
. . . . . . . 8
 | 
| 26 | eqid 2196 | 
. . . . . . . . . . . 12
 | |
| 27 | eqid 2196 | 
. . . . . . . . . . . 12
 | |
| 28 | 26, 27 | crngcom 13570 | 
. . . . . . . . . . 11
 | 
| 29 | 28 | ad4ant134 1219 | 
. . . . . . . . . 10
 | 
| 30 | 29 | eceq1d 6628 | 
. . . . . . . . 9
 | 
| 31 | ringrng 13592 | 
. . . . . . . . . . . . . 14
 | |
| 32 | 1, 31 | syl 14 | 
. . . . . . . . . . . . 13
 | 
| 33 | 32 | adantr 276 | 
. . . . . . . . . . . 12
 | 
| 34 | 3 | lidlsubg 14042 | 
. . . . . . . . . . . . 13
 | 
| 35 | 1, 34 | sylan 283 | 
. . . . . . . . . . . 12
 | 
| 36 | 33, 6, 35 | 3jca 1179 | 
. . . . . . . . . . 11
 | 
| 37 | 36 | adantr 276 | 
. . . . . . . . . 10
 | 
| 38 | simpr 110 | 
. . . . . . . . . . 11
 | |
| 39 | 38 | anim1i 340 | 
. . . . . . . . . 10
 | 
| 40 | eqid 2196 | 
. . . . . . . . . . 11
 | |
| 41 | eqid 2196 | 
. . . . . . . . . . 11
 | |
| 42 | 40, 7, 26, 27, 41 | qusmulrng 14088 | 
. . . . . . . . . 10
 | 
| 43 | 37, 39, 42 | syl2an2r 595 | 
. . . . . . . . 9
 | 
| 44 | 39 | ancomd 267 | 
. . . . . . . . . 10
 | 
| 45 | 40, 7, 26, 27, 41 | qusmulrng 14088 | 
. . . . . . . . . 10
 | 
| 46 | 37, 44, 45 | syl2an2r 595 | 
. . . . . . . . 9
 | 
| 47 | 30, 43, 46 | 3eqtr4rd 2240 | 
. . . . . . . 8
 | 
| 48 | 19, 25, 47 | ectocld 6660 | 
. . . . . . 7
 | 
| 49 | 48 | an32s 568 | 
. . . . . 6
 | 
| 50 | 19, 22, 49 | ectocld 6660 | 
. . . . 5
 | 
| 51 | 50 | expl 378 | 
. . . 4
 | 
| 52 | 18, 51 | sylbird 170 | 
. . 3
 | 
| 53 | 52 | ralrimivv 2578 | 
. 2
 | 
| 54 | eqid 2196 | 
. . 3
 | |
| 55 | 54, 41 | iscrng2 13571 | 
. 2
 | 
| 56 | 10, 53, 55 | sylanbrc 417 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-pre-ltirr 7991 ax-pre-lttrn 7993 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-tp 3630 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-tpos 6303 df-er 6592 df-ec 6594 df-qs 6598 df-pnf 8063 df-mnf 8064 df-ltxr 8066 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-5 9052 df-6 9053 df-7 9054 df-8 9055 df-ndx 12681 df-slot 12682 df-base 12684 df-sets 12685 df-iress 12686 df-plusg 12768 df-mulr 12769 df-sca 12771 df-vsca 12772 df-ip 12773 df-0g 12929 df-iimas 12945 df-qus 12946 df-mgm 12999 df-sgrp 13045 df-mnd 13058 df-grp 13135 df-minusg 13136 df-sbg 13137 df-subg 13300 df-nsg 13301 df-eqg 13302 df-cmn 13416 df-abl 13417 df-mgp 13477 df-rng 13489 df-ur 13516 df-srg 13520 df-ring 13554 df-cring 13555 df-oppr 13624 df-subrg 13775 df-lmod 13845 df-lssm 13909 df-lsp 13943 df-sra 13991 df-rgmod 13992 df-lidl 14025 df-rsp 14026 df-2idl 14056 | 
| This theorem is referenced by: zncrng2 14191 | 
| Copyright terms: Public domain | W3C validator |