ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sralmod0g Unicode version

Theorem sralmod0g 13931
Description: The subring module inherits a zero from its ring. (Contributed by Stefan O'Rear, 27-Dec-2014.)
Hypotheses
Ref Expression
sralmod0.a  |-  ( ph  ->  A  =  ( (subringAlg  `  W ) `  S
) )
sralmod0.z  |-  ( ph  ->  .0.  =  ( 0g
`  W ) )
sralmod0.s  |-  ( ph  ->  S  C_  ( Base `  W ) )
sralmod0g.w  |-  ( ph  ->  W  e.  X )
Assertion
Ref Expression
sralmod0g  |-  ( ph  ->  .0.  =  ( 0g
`  A ) )

Proof of Theorem sralmod0g
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sralmod0.z . 2  |-  ( ph  ->  .0.  =  ( 0g
`  W ) )
2 eqidd 2194 . . 3  |-  ( ph  ->  ( Base `  W
)  =  ( Base `  W ) )
3 sralmod0.a . . . 4  |-  ( ph  ->  A  =  ( (subringAlg  `  W ) `  S
) )
4 sralmod0.s . . . 4  |-  ( ph  ->  S  C_  ( Base `  W ) )
5 sralmod0g.w . . . 4  |-  ( ph  ->  W  e.  X )
63, 4, 5srabaseg 13919 . . 3  |-  ( ph  ->  ( Base `  W
)  =  ( Base `  A ) )
73, 4, 5sraex 13926 . . 3  |-  ( ph  ->  A  e.  _V )
83, 4, 5sraaddgg 13920 . . . 4  |-  ( ph  ->  ( +g  `  W
)  =  ( +g  `  A ) )
98oveqdr 5938 . . 3  |-  ( (
ph  /\  ( a  e.  ( Base `  W
)  /\  b  e.  ( Base `  W )
) )  ->  (
a ( +g  `  W
) b )  =  ( a ( +g  `  A ) b ) )
102, 6, 5, 7, 9grpidpropdg 12947 . 2  |-  ( ph  ->  ( 0g `  W
)  =  ( 0g
`  A ) )
111, 10eqtrd 2226 1  |-  ( ph  ->  .0.  =  ( 0g
`  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   _Vcvv 2760    C_ wss 3153   ` cfv 5246   Basecbs 12608   +g cplusg 12685   0gc0g 12857  subringAlg csra 13913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4462  ax-setind 4565  ax-cnex 7953  ax-resscn 7954  ax-1cn 7955  ax-1re 7956  ax-icn 7957  ax-addcl 7958  ax-addrcl 7959  ax-mulcl 7960  ax-addcom 7962  ax-addass 7964  ax-i2m1 7967  ax-0lt1 7968  ax-0id 7970  ax-rnegex 7971  ax-pre-ltirr 7974  ax-pre-lttrn 7976  ax-pre-ltadd 7978
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4322  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-iota 5207  df-fun 5248  df-fn 5249  df-f 5250  df-f1 5251  df-fo 5252  df-f1o 5253  df-fv 5254  df-riota 5865  df-ov 5913  df-oprab 5914  df-mpo 5915  df-pnf 8046  df-mnf 8047  df-ltxr 8049  df-inn 8973  df-2 9031  df-3 9032  df-4 9033  df-5 9034  df-6 9035  df-7 9036  df-8 9037  df-ndx 12611  df-slot 12612  df-base 12614  df-sets 12615  df-iress 12616  df-plusg 12698  df-mulr 12699  df-sca 12701  df-vsca 12702  df-ip 12703  df-0g 12859  df-sra 13915
This theorem is referenced by:  rlm0g  13937
  Copyright terms: Public domain W3C validator