ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemdec Unicode version

Theorem resqrexlemdec 10815
Description: Lemma for resqrex 10830. The sequence is decreasing. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
resqrexlemex.a  |-  ( ph  ->  A  e.  RR )
resqrexlemex.agt0  |-  ( ph  ->  0  <_  A )
Assertion
Ref Expression
resqrexlemdec  |-  ( (
ph  /\  N  e.  NN )  ->  ( F `
 ( N  + 
1 ) )  < 
( F `  N
) )
Distinct variable groups:    y, A, z    ph, y, z
Allowed substitution hints:    F( y, z)    N( y, z)

Proof of Theorem resqrexlemdec
StepHypRef Expression
1 resqrexlemex.seq . . 3  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
2 resqrexlemex.a . . 3  |-  ( ph  ->  A  e.  RR )
3 resqrexlemex.agt0 . . 3  |-  ( ph  ->  0  <_  A )
41, 2, 3resqrexlemfp1 10813 . 2  |-  ( (
ph  /\  N  e.  NN )  ->  ( F `
 ( N  + 
1 ) )  =  ( ( ( F `
 N )  +  ( A  /  ( F `  N )
) )  /  2
) )
52adantr 274 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  A  e.  RR )
61, 2, 3resqrexlemf 10811 . . . . . . 7  |-  ( ph  ->  F : NN --> RR+ )
76ffvelrnda 5563 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( F `
 N )  e.  RR+ )
85, 7rerpdivcld 9545 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( A  /  ( F `  N ) )  e.  RR )
97rpred 9513 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( F `
 N )  e.  RR )
101, 2, 3resqrexlemover 10814 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  A  < 
( ( F `  N ) ^ 2 ) )
117rpcnd 9515 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  ( F `
 N )  e.  CC )
1211sqvald 10452 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  N ) ^ 2 )  =  ( ( F `  N )  x.  ( F `  N )
) )
1310, 12breqtrd 3962 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  A  < 
( ( F `  N )  x.  ( F `  N )
) )
145, 9, 7ltdivmuld 9565 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( A  /  ( F `
 N ) )  <  ( F `  N )  <->  A  <  ( ( F `  N
)  x.  ( F `
 N ) ) ) )
1513, 14mpbird 166 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( A  /  ( F `  N ) )  < 
( F `  N
) )
168, 9, 9, 15ltadd2dd 8208 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  N )  +  ( A  / 
( F `  N
) ) )  < 
( ( F `  N )  +  ( F `  N ) ) )
17112timesd 8986 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  ( 2  x.  ( F `  N ) )  =  ( ( F `  N )  +  ( F `  N ) ) )
1816, 17breqtrrd 3964 . . 3  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  N )  +  ( A  / 
( F `  N
) ) )  < 
( 2  x.  ( F `  N )
) )
199, 8readdcld 7819 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  N )  +  ( A  / 
( F `  N
) ) )  e.  RR )
20 2rp 9475 . . . . 5  |-  2  e.  RR+
2120a1i 9 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  2  e.  RR+ )
2219, 9, 21ltdivmuld 9565 . . 3  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N )  +  ( A  /  ( F `
 N ) ) )  /  2 )  <  ( F `  N )  <->  ( ( F `  N )  +  ( A  / 
( F `  N
) ) )  < 
( 2  x.  ( F `  N )
) ) )
2318, 22mpbird 166 . 2  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
)  +  ( A  /  ( F `  N ) ) )  /  2 )  < 
( F `  N
) )
244, 23eqbrtrd 3958 1  |-  ( (
ph  /\  N  e.  NN )  ->  ( F `
 ( N  + 
1 ) )  < 
( F `  N
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1332    e. wcel 1481   {csn 3532   class class class wbr 3937    X. cxp 4545   ` cfv 5131  (class class class)co 5782    e. cmpo 5784   RRcr 7643   0cc0 7644   1c1 7645    + caddc 7647    x. cmul 7649    < clt 7824    <_ cle 7825    / cdiv 8456   NNcn 8744   2c2 8795   RR+crp 9470    seqcseq 10249   ^cexp 10323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-n0 9002  df-z 9079  df-uz 9351  df-rp 9471  df-seqfrec 10250  df-exp 10324
This theorem is referenced by:  resqrexlemdecn  10816
  Copyright terms: Public domain W3C validator