ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  effsumlt Unicode version

Theorem effsumlt 11435
Description: The partial sums of the series expansion of the exponential function at a positive real number are bounded by the value of the function. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 29-Apr-2014.)
Hypotheses
Ref Expression
effsumlt.1  |-  F  =  ( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) )
effsumlt.2  |-  ( ph  ->  A  e.  RR+ )
effsumlt.3  |-  ( ph  ->  N  e.  NN0 )
Assertion
Ref Expression
effsumlt  |-  ( ph  ->  (  seq 0 (  +  ,  F ) `
 N )  < 
( exp `  A
) )
Distinct variable group:    A, n
Allowed substitution hints:    ph( n)    F( n)    N( n)

Proof of Theorem effsumlt
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 nn0uz 9384 . . . . 5  |-  NN0  =  ( ZZ>= `  0 )
2 0zd 9090 . . . . 5  |-  ( ph  ->  0  e.  ZZ )
3 effsumlt.2 . . . . . . . 8  |-  ( ph  ->  A  e.  RR+ )
43rpcnd 9515 . . . . . . 7  |-  ( ph  ->  A  e.  CC )
5 effsumlt.1 . . . . . . . 8  |-  F  =  ( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) )
65eftvalcn 11400 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( F `  k
)  =  ( ( A ^ k )  /  ( ! `  k ) ) )
74, 6sylan 281 . . . . . 6  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  k )  =  ( ( A ^ k
)  /  ( ! `
 k ) ) )
83rpred 9513 . . . . . . 7  |-  ( ph  ->  A  e.  RR )
9 reeftcl 11398 . . . . . . 7  |-  ( ( A  e.  RR  /\  k  e.  NN0 )  -> 
( ( A ^
k )  /  ( ! `  k )
)  e.  RR )
108, 9sylan 281 . . . . . 6  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ( A ^ k )  / 
( ! `  k
) )  e.  RR )
117, 10eqeltrd 2217 . . . . 5  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  k )  e.  RR )
121, 2, 11serfre 10279 . . . 4  |-  ( ph  ->  seq 0 (  +  ,  F ) : NN0 --> RR )
13 effsumlt.3 . . . 4  |-  ( ph  ->  N  e.  NN0 )
1412, 13ffvelrnd 5564 . . 3  |-  ( ph  ->  (  seq 0 (  +  ,  F ) `
 N )  e.  RR )
15 eqid 2140 . . . 4  |-  ( ZZ>= `  ( N  +  1
) )  =  (
ZZ>= `  ( N  + 
1 ) )
16 peano2nn0 9041 . . . . 5  |-  ( N  e.  NN0  ->  ( N  +  1 )  e. 
NN0 )
1713, 16syl 14 . . . 4  |-  ( ph  ->  ( N  +  1 )  e.  NN0 )
18 eqidd 2141 . . . 4  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  k )  =  ( F `  k ) )
19 nn0z 9098 . . . . . . 7  |-  ( k  e.  NN0  ->  k  e.  ZZ )
20 rpexpcl 10343 . . . . . . 7  |-  ( ( A  e.  RR+  /\  k  e.  ZZ )  ->  ( A ^ k )  e.  RR+ )
213, 19, 20syl2an 287 . . . . . 6  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( A ^ k )  e.  RR+ )
22 faccl 10513 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( ! `
 k )  e.  NN )
2322adantl 275 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ! `  k )  e.  NN )
2423nnrpd 9511 . . . . . 6  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ! `  k )  e.  RR+ )
2521, 24rpdivcld 9531 . . . . 5  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ( A ^ k )  / 
( ! `  k
) )  e.  RR+ )
267, 25eqeltrd 2217 . . . 4  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  k )  e.  RR+ )
275efcllem 11402 . . . . 5  |-  ( A  e.  CC  ->  seq 0 (  +  ,  F )  e.  dom  ~~>  )
284, 27syl 14 . . . 4  |-  ( ph  ->  seq 0 (  +  ,  F )  e. 
dom 
~~>  )
291, 15, 17, 18, 26, 28isumrpcl 11295 . . 3  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( F `  k )  e.  RR+ )
3014, 29ltaddrpd 9547 . 2  |-  ( ph  ->  (  seq 0 (  +  ,  F ) `
 N )  < 
( (  seq 0
(  +  ,  F
) `  N )  +  sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( F `  k ) ) )
315efval2 11408 . . . 4  |-  ( A  e.  CC  ->  ( exp `  A )  = 
sum_ k  e.  NN0  ( F `  k ) )
324, 31syl 14 . . 3  |-  ( ph  ->  ( exp `  A
)  =  sum_ k  e.  NN0  ( F `  k ) )
3311recnd 7818 . . . 4  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  k )  e.  CC )
341, 15, 17, 18, 33, 28isumsplit 11292 . . 3  |-  ( ph  -> 
sum_ k  e.  NN0  ( F `  k )  =  ( sum_ k  e.  ( 0 ... (
( N  +  1 )  -  1 ) ) ( F `  k )  +  sum_ k  e.  ( ZZ>= `  ( N  +  1
) ) ( F `
 k ) ) )
3513nn0cnd 9056 . . . . . . . 8  |-  ( ph  ->  N  e.  CC )
36 ax-1cn 7737 . . . . . . . 8  |-  1  e.  CC
37 pncan 7992 . . . . . . . 8  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  + 
1 )  -  1 )  =  N )
3835, 36, 37sylancl 410 . . . . . . 7  |-  ( ph  ->  ( ( N  + 
1 )  -  1 )  =  N )
3938oveq2d 5798 . . . . . 6  |-  ( ph  ->  ( 0 ... (
( N  +  1 )  -  1 ) )  =  ( 0 ... N ) )
4039sumeq1d 11167 . . . . 5  |-  ( ph  -> 
sum_ k  e.  ( 0 ... ( ( N  +  1 )  -  1 ) ) ( F `  k
)  =  sum_ k  e.  ( 0 ... N
) ( F `  k ) )
41 eqidd 2141 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  0 )
)  ->  ( F `  k )  =  ( F `  k ) )
4213, 1eleqtrdi 2233 . . . . . 6  |-  ( ph  ->  N  e.  ( ZZ>= ` 
0 ) )
43 elnn0uz 9387 . . . . . . 7  |-  ( k  e.  NN0  <->  k  e.  (
ZZ>= `  0 ) )
4443, 33sylan2br 286 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  0 )
)  ->  ( F `  k )  e.  CC )
4541, 42, 44fsum3ser 11198 . . . . 5  |-  ( ph  -> 
sum_ k  e.  ( 0 ... N ) ( F `  k
)  =  (  seq 0 (  +  ,  F ) `  N
) )
4640, 45eqtrd 2173 . . . 4  |-  ( ph  -> 
sum_ k  e.  ( 0 ... ( ( N  +  1 )  -  1 ) ) ( F `  k
)  =  (  seq 0 (  +  ,  F ) `  N
) )
4746oveq1d 5797 . . 3  |-  ( ph  ->  ( sum_ k  e.  ( 0 ... ( ( N  +  1 )  -  1 ) ) ( F `  k
)  +  sum_ k  e.  ( ZZ>= `  ( N  +  1 ) ) ( F `  k
) )  =  ( (  seq 0 (  +  ,  F ) `
 N )  + 
sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( F `  k ) ) )
4832, 34, 473eqtrd 2177 . 2  |-  ( ph  ->  ( exp `  A
)  =  ( (  seq 0 (  +  ,  F ) `  N )  +  sum_ k  e.  ( ZZ>= `  ( N  +  1
) ) ( F `
 k ) ) )
4930, 48breqtrrd 3964 1  |-  ( ph  ->  (  seq 0 (  +  ,  F ) `
 N )  < 
( exp `  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1332    e. wcel 1481   class class class wbr 3937    |-> cmpt 3997   dom cdm 4547   ` cfv 5131  (class class class)co 5782   CCcc 7642   RRcr 7643   0cc0 7644   1c1 7645    + caddc 7647    < clt 7824    - cmin 7957    / cdiv 8456   NNcn 8744   NN0cn0 9001   ZZcz 9078   ZZ>=cuz 9350   RR+crp 9470   ...cfz 9821    seqcseq 10249   ^cexp 10323   !cfa 10503    ~~> cli 11079   sum_csu 11154   expce 11385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-isom 5140  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-frec 6296  df-1o 6321  df-oadd 6325  df-er 6437  df-en 6643  df-dom 6644  df-fin 6645  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-n0 9002  df-z 9079  df-uz 9351  df-q 9439  df-rp 9471  df-ico 9707  df-fz 9822  df-fzo 9951  df-seqfrec 10250  df-exp 10324  df-fac 10504  df-ihash 10554  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803  df-clim 11080  df-sumdc 11155  df-ef 11391
This theorem is referenced by:  efgt1p2  11438  efgt1p  11439
  Copyright terms: Public domain W3C validator