ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  effsumlt Unicode version

Theorem effsumlt 11655
Description: The partial sums of the series expansion of the exponential function at a positive real number are bounded by the value of the function. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 29-Apr-2014.)
Hypotheses
Ref Expression
effsumlt.1  |-  F  =  ( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) )
effsumlt.2  |-  ( ph  ->  A  e.  RR+ )
effsumlt.3  |-  ( ph  ->  N  e.  NN0 )
Assertion
Ref Expression
effsumlt  |-  ( ph  ->  (  seq 0 (  +  ,  F ) `
 N )  < 
( exp `  A
) )
Distinct variable group:    A, n
Allowed substitution hints:    ph( n)    F( n)    N( n)

Proof of Theorem effsumlt
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 nn0uz 9521 . . . . 5  |-  NN0  =  ( ZZ>= `  0 )
2 0zd 9224 . . . . 5  |-  ( ph  ->  0  e.  ZZ )
3 effsumlt.2 . . . . . . . 8  |-  ( ph  ->  A  e.  RR+ )
43rpcnd 9655 . . . . . . 7  |-  ( ph  ->  A  e.  CC )
5 effsumlt.1 . . . . . . . 8  |-  F  =  ( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) )
65eftvalcn 11620 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( F `  k
)  =  ( ( A ^ k )  /  ( ! `  k ) ) )
74, 6sylan 281 . . . . . 6  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  k )  =  ( ( A ^ k
)  /  ( ! `
 k ) ) )
83rpred 9653 . . . . . . 7  |-  ( ph  ->  A  e.  RR )
9 reeftcl 11618 . . . . . . 7  |-  ( ( A  e.  RR  /\  k  e.  NN0 )  -> 
( ( A ^
k )  /  ( ! `  k )
)  e.  RR )
108, 9sylan 281 . . . . . 6  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ( A ^ k )  / 
( ! `  k
) )  e.  RR )
117, 10eqeltrd 2247 . . . . 5  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  k )  e.  RR )
121, 2, 11serfre 10431 . . . 4  |-  ( ph  ->  seq 0 (  +  ,  F ) : NN0 --> RR )
13 effsumlt.3 . . . 4  |-  ( ph  ->  N  e.  NN0 )
1412, 13ffvelrnd 5632 . . 3  |-  ( ph  ->  (  seq 0 (  +  ,  F ) `
 N )  e.  RR )
15 eqid 2170 . . . 4  |-  ( ZZ>= `  ( N  +  1
) )  =  (
ZZ>= `  ( N  + 
1 ) )
16 peano2nn0 9175 . . . . 5  |-  ( N  e.  NN0  ->  ( N  +  1 )  e. 
NN0 )
1713, 16syl 14 . . . 4  |-  ( ph  ->  ( N  +  1 )  e.  NN0 )
18 eqidd 2171 . . . 4  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  k )  =  ( F `  k ) )
19 nn0z 9232 . . . . . . 7  |-  ( k  e.  NN0  ->  k  e.  ZZ )
20 rpexpcl 10495 . . . . . . 7  |-  ( ( A  e.  RR+  /\  k  e.  ZZ )  ->  ( A ^ k )  e.  RR+ )
213, 19, 20syl2an 287 . . . . . 6  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( A ^ k )  e.  RR+ )
22 faccl 10669 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( ! `
 k )  e.  NN )
2322adantl 275 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ! `  k )  e.  NN )
2423nnrpd 9651 . . . . . 6  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ! `  k )  e.  RR+ )
2521, 24rpdivcld 9671 . . . . 5  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ( A ^ k )  / 
( ! `  k
) )  e.  RR+ )
267, 25eqeltrd 2247 . . . 4  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  k )  e.  RR+ )
275efcllem 11622 . . . . 5  |-  ( A  e.  CC  ->  seq 0 (  +  ,  F )  e.  dom  ~~>  )
284, 27syl 14 . . . 4  |-  ( ph  ->  seq 0 (  +  ,  F )  e. 
dom 
~~>  )
291, 15, 17, 18, 26, 28isumrpcl 11457 . . 3  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( F `  k )  e.  RR+ )
3014, 29ltaddrpd 9687 . 2  |-  ( ph  ->  (  seq 0 (  +  ,  F ) `
 N )  < 
( (  seq 0
(  +  ,  F
) `  N )  +  sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( F `  k ) ) )
315efval2 11628 . . . 4  |-  ( A  e.  CC  ->  ( exp `  A )  = 
sum_ k  e.  NN0  ( F `  k ) )
324, 31syl 14 . . 3  |-  ( ph  ->  ( exp `  A
)  =  sum_ k  e.  NN0  ( F `  k ) )
3311recnd 7948 . . . 4  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  k )  e.  CC )
341, 15, 17, 18, 33, 28isumsplit 11454 . . 3  |-  ( ph  -> 
sum_ k  e.  NN0  ( F `  k )  =  ( sum_ k  e.  ( 0 ... (
( N  +  1 )  -  1 ) ) ( F `  k )  +  sum_ k  e.  ( ZZ>= `  ( N  +  1
) ) ( F `
 k ) ) )
3513nn0cnd 9190 . . . . . . . 8  |-  ( ph  ->  N  e.  CC )
36 ax-1cn 7867 . . . . . . . 8  |-  1  e.  CC
37 pncan 8125 . . . . . . . 8  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  + 
1 )  -  1 )  =  N )
3835, 36, 37sylancl 411 . . . . . . 7  |-  ( ph  ->  ( ( N  + 
1 )  -  1 )  =  N )
3938oveq2d 5869 . . . . . 6  |-  ( ph  ->  ( 0 ... (
( N  +  1 )  -  1 ) )  =  ( 0 ... N ) )
4039sumeq1d 11329 . . . . 5  |-  ( ph  -> 
sum_ k  e.  ( 0 ... ( ( N  +  1 )  -  1 ) ) ( F `  k
)  =  sum_ k  e.  ( 0 ... N
) ( F `  k ) )
41 eqidd 2171 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  0 )
)  ->  ( F `  k )  =  ( F `  k ) )
4213, 1eleqtrdi 2263 . . . . . 6  |-  ( ph  ->  N  e.  ( ZZ>= ` 
0 ) )
43 elnn0uz 9524 . . . . . . 7  |-  ( k  e.  NN0  <->  k  e.  (
ZZ>= `  0 ) )
4443, 33sylan2br 286 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  0 )
)  ->  ( F `  k )  e.  CC )
4541, 42, 44fsum3ser 11360 . . . . 5  |-  ( ph  -> 
sum_ k  e.  ( 0 ... N ) ( F `  k
)  =  (  seq 0 (  +  ,  F ) `  N
) )
4640, 45eqtrd 2203 . . . 4  |-  ( ph  -> 
sum_ k  e.  ( 0 ... ( ( N  +  1 )  -  1 ) ) ( F `  k
)  =  (  seq 0 (  +  ,  F ) `  N
) )
4746oveq1d 5868 . . 3  |-  ( ph  ->  ( sum_ k  e.  ( 0 ... ( ( N  +  1 )  -  1 ) ) ( F `  k
)  +  sum_ k  e.  ( ZZ>= `  ( N  +  1 ) ) ( F `  k
) )  =  ( (  seq 0 (  +  ,  F ) `
 N )  + 
sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( F `  k ) ) )
4832, 34, 473eqtrd 2207 . 2  |-  ( ph  ->  ( exp `  A
)  =  ( (  seq 0 (  +  ,  F ) `  N )  +  sum_ k  e.  ( ZZ>= `  ( N  +  1
) ) ( F `
 k ) ) )
4930, 48breqtrrd 4017 1  |-  ( ph  ->  (  seq 0 (  +  ,  F ) `
 N )  < 
( exp `  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141   class class class wbr 3989    |-> cmpt 4050   dom cdm 4611   ` cfv 5198  (class class class)co 5853   CCcc 7772   RRcr 7773   0cc0 7774   1c1 7775    + caddc 7777    < clt 7954    - cmin 8090    / cdiv 8589   NNcn 8878   NN0cn0 9135   ZZcz 9212   ZZ>=cuz 9487   RR+crp 9610   ...cfz 9965    seqcseq 10401   ^cexp 10475   !cfa 10659    ~~> cli 11241   sum_csu 11316   expce 11605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-frec 6370  df-1o 6395  df-oadd 6399  df-er 6513  df-en 6719  df-dom 6720  df-fin 6721  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-ico 9851  df-fz 9966  df-fzo 10099  df-seqfrec 10402  df-exp 10476  df-fac 10660  df-ihash 10710  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-clim 11242  df-sumdc 11317  df-ef 11611
This theorem is referenced by:  efgt1p2  11658  efgt1p  11659
  Copyright terms: Public domain W3C validator