| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > effsumlt | Unicode version | ||
| Description: The partial sums of the series expansion of the exponential function at a positive real number are bounded by the value of the function. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 29-Apr-2014.) |
| Ref | Expression |
|---|---|
| effsumlt.1 |
|
| effsumlt.2 |
|
| effsumlt.3 |
|
| Ref | Expression |
|---|---|
| effsumlt |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0uz 9757 |
. . . . 5
| |
| 2 | 0zd 9458 |
. . . . 5
| |
| 3 | effsumlt.2 |
. . . . . . . 8
| |
| 4 | 3 | rpcnd 9894 |
. . . . . . 7
|
| 5 | effsumlt.1 |
. . . . . . . 8
| |
| 6 | 5 | eftvalcn 12168 |
. . . . . . 7
|
| 7 | 4, 6 | sylan 283 |
. . . . . 6
|
| 8 | 3 | rpred 9892 |
. . . . . . 7
|
| 9 | reeftcl 12166 |
. . . . . . 7
| |
| 10 | 8, 9 | sylan 283 |
. . . . . 6
|
| 11 | 7, 10 | eqeltrd 2306 |
. . . . 5
|
| 12 | 1, 2, 11 | serfre 10706 |
. . . 4
|
| 13 | effsumlt.3 |
. . . 4
| |
| 14 | 12, 13 | ffvelcdmd 5771 |
. . 3
|
| 15 | eqid 2229 |
. . . 4
| |
| 16 | peano2nn0 9409 |
. . . . 5
| |
| 17 | 13, 16 | syl 14 |
. . . 4
|
| 18 | eqidd 2230 |
. . . 4
| |
| 19 | nn0z 9466 |
. . . . . . 7
| |
| 20 | rpexpcl 10780 |
. . . . . . 7
| |
| 21 | 3, 19, 20 | syl2an 289 |
. . . . . 6
|
| 22 | faccl 10957 |
. . . . . . . 8
| |
| 23 | 22 | adantl 277 |
. . . . . . 7
|
| 24 | 23 | nnrpd 9890 |
. . . . . 6
|
| 25 | 21, 24 | rpdivcld 9910 |
. . . . 5
|
| 26 | 7, 25 | eqeltrd 2306 |
. . . 4
|
| 27 | 5 | efcllem 12170 |
. . . . 5
|
| 28 | 4, 27 | syl 14 |
. . . 4
|
| 29 | 1, 15, 17, 18, 26, 28 | isumrpcl 12005 |
. . 3
|
| 30 | 14, 29 | ltaddrpd 9926 |
. 2
|
| 31 | 5 | efval2 12176 |
. . . 4
|
| 32 | 4, 31 | syl 14 |
. . 3
|
| 33 | 11 | recnd 8175 |
. . . 4
|
| 34 | 1, 15, 17, 18, 33, 28 | isumsplit 12002 |
. . 3
|
| 35 | 13 | nn0cnd 9424 |
. . . . . . . 8
|
| 36 | ax-1cn 8092 |
. . . . . . . 8
| |
| 37 | pncan 8352 |
. . . . . . . 8
| |
| 38 | 35, 36, 37 | sylancl 413 |
. . . . . . 7
|
| 39 | 38 | oveq2d 6017 |
. . . . . 6
|
| 40 | 39 | sumeq1d 11877 |
. . . . 5
|
| 41 | eqidd 2230 |
. . . . . 6
| |
| 42 | 13, 1 | eleqtrdi 2322 |
. . . . . 6
|
| 43 | elnn0uz 9760 |
. . . . . . 7
| |
| 44 | 43, 33 | sylan2br 288 |
. . . . . 6
|
| 45 | 41, 42, 44 | fsum3ser 11908 |
. . . . 5
|
| 46 | 40, 45 | eqtrd 2262 |
. . . 4
|
| 47 | 46 | oveq1d 6016 |
. . 3
|
| 48 | 32, 34, 47 | 3eqtrd 2266 |
. 2
|
| 49 | 30, 48 | breqtrrd 4111 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-mulrcl 8098 ax-addcom 8099 ax-mulcom 8100 ax-addass 8101 ax-mulass 8102 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-1rid 8106 ax-0id 8107 ax-rnegex 8108 ax-precex 8109 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-apti 8114 ax-pre-ltadd 8115 ax-pre-mulgt0 8116 ax-pre-mulext 8117 ax-arch 8118 ax-caucvg 8119 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-isom 5327 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-recs 6451 df-irdg 6516 df-frec 6537 df-1o 6562 df-oadd 6566 df-er 6680 df-en 6888 df-dom 6889 df-fin 6890 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-reap 8722 df-ap 8729 df-div 8820 df-inn 9111 df-2 9169 df-3 9170 df-4 9171 df-n0 9370 df-z 9447 df-uz 9723 df-q 9815 df-rp 9850 df-ico 10090 df-fz 10205 df-fzo 10339 df-seqfrec 10670 df-exp 10761 df-fac 10948 df-ihash 10998 df-cj 11353 df-re 11354 df-im 11355 df-rsqrt 11509 df-abs 11510 df-clim 11790 df-sumdc 11865 df-ef 12159 |
| This theorem is referenced by: efgt1p2 12206 efgt1p 12207 |
| Copyright terms: Public domain | W3C validator |