ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpcxplt2 Unicode version

Theorem rpcxplt2 13380
Description: Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 15-Sep-2014.)
Assertion
Ref Expression
rpcxplt2  |-  ( ( A  e.  RR+  /\  B  e.  RR+  /\  C  e.  RR+ )  ->  ( A  <  B  <->  ( A  ^c  C )  <  ( B  ^c  C ) ) )

Proof of Theorem rpcxplt2
StepHypRef Expression
1 simp3 988 . . . . 5  |-  ( ( A  e.  RR+  /\  B  e.  RR+  /\  C  e.  RR+ )  ->  C  e.  RR+ )
21rpred 9623 . . . 4  |-  ( ( A  e.  RR+  /\  B  e.  RR+  /\  C  e.  RR+ )  ->  C  e.  RR )
3 simp1 986 . . . . 5  |-  ( ( A  e.  RR+  /\  B  e.  RR+  /\  C  e.  RR+ )  ->  A  e.  RR+ )
43relogcld 13344 . . . 4  |-  ( ( A  e.  RR+  /\  B  e.  RR+  /\  C  e.  RR+ )  ->  ( log `  A )  e.  RR )
52, 4remulcld 7920 . . 3  |-  ( ( A  e.  RR+  /\  B  e.  RR+  /\  C  e.  RR+ )  ->  ( C  x.  ( log `  A
) )  e.  RR )
6 simp2 987 . . . . 5  |-  ( ( A  e.  RR+  /\  B  e.  RR+  /\  C  e.  RR+ )  ->  B  e.  RR+ )
76relogcld 13344 . . . 4  |-  ( ( A  e.  RR+  /\  B  e.  RR+  /\  C  e.  RR+ )  ->  ( log `  B )  e.  RR )
82, 7remulcld 7920 . . 3  |-  ( ( A  e.  RR+  /\  B  e.  RR+  /\  C  e.  RR+ )  ->  ( C  x.  ( log `  B
) )  e.  RR )
9 eflt 13237 . . 3  |-  ( ( ( C  x.  ( log `  A ) )  e.  RR  /\  ( C  x.  ( log `  B ) )  e.  RR )  ->  (
( C  x.  ( log `  A ) )  <  ( C  x.  ( log `  B ) )  <->  ( exp `  ( C  x.  ( log `  A ) ) )  <  ( exp `  ( C  x.  ( log `  B ) ) ) ) )
105, 8, 9syl2anc 409 . 2  |-  ( ( A  e.  RR+  /\  B  e.  RR+  /\  C  e.  RR+ )  ->  ( ( C  x.  ( log `  A ) )  < 
( C  x.  ( log `  B ) )  <-> 
( exp `  ( C  x.  ( log `  A ) ) )  <  ( exp `  ( C  x.  ( log `  B ) ) ) ) )
11 eflt 13237 . . . 4  |-  ( ( ( log `  A
)  e.  RR  /\  ( log `  B )  e.  RR )  -> 
( ( log `  A
)  <  ( log `  B )  <->  ( exp `  ( log `  A
) )  <  ( exp `  ( log `  B
) ) ) )
124, 7, 11syl2anc 409 . . 3  |-  ( ( A  e.  RR+  /\  B  e.  RR+  /\  C  e.  RR+ )  ->  ( ( log `  A )  <  ( log `  B
)  <->  ( exp `  ( log `  A ) )  <  ( exp `  ( log `  B ) ) ) )
134, 7, 1ltmul2d 9666 . . 3  |-  ( ( A  e.  RR+  /\  B  e.  RR+  /\  C  e.  RR+ )  ->  ( ( log `  A )  <  ( log `  B
)  <->  ( C  x.  ( log `  A ) )  <  ( C  x.  ( log `  B
) ) ) )
143reeflogd 13345 . . . 4  |-  ( ( A  e.  RR+  /\  B  e.  RR+  /\  C  e.  RR+ )  ->  ( exp `  ( log `  A
) )  =  A )
156reeflogd 13345 . . . 4  |-  ( ( A  e.  RR+  /\  B  e.  RR+  /\  C  e.  RR+ )  ->  ( exp `  ( log `  B
) )  =  B )
1614, 15breq12d 3989 . . 3  |-  ( ( A  e.  RR+  /\  B  e.  RR+  /\  C  e.  RR+ )  ->  ( ( exp `  ( log `  A ) )  < 
( exp `  ( log `  B ) )  <-> 
A  <  B )
)
1712, 13, 163bitr3rd 218 . 2  |-  ( ( A  e.  RR+  /\  B  e.  RR+  /\  C  e.  RR+ )  ->  ( A  <  B  <->  ( C  x.  ( log `  A
) )  <  ( C  x.  ( log `  B ) ) ) )
181rpcnd 9625 . . . 4  |-  ( ( A  e.  RR+  /\  B  e.  RR+  /\  C  e.  RR+ )  ->  C  e.  CC )
19 rpcxpef 13356 . . . 4  |-  ( ( A  e.  RR+  /\  C  e.  CC )  ->  ( A  ^c  C )  =  ( exp `  ( C  x.  ( log `  A ) ) ) )
203, 18, 19syl2anc 409 . . 3  |-  ( ( A  e.  RR+  /\  B  e.  RR+  /\  C  e.  RR+ )  ->  ( A  ^c  C )  =  ( exp `  ( C  x.  ( log `  A ) ) ) )
21 rpcxpef 13356 . . . 4  |-  ( ( B  e.  RR+  /\  C  e.  CC )  ->  ( B  ^c  C )  =  ( exp `  ( C  x.  ( log `  B ) ) ) )
226, 18, 21syl2anc 409 . . 3  |-  ( ( A  e.  RR+  /\  B  e.  RR+  /\  C  e.  RR+ )  ->  ( B  ^c  C )  =  ( exp `  ( C  x.  ( log `  B ) ) ) )
2320, 22breq12d 3989 . 2  |-  ( ( A  e.  RR+  /\  B  e.  RR+  /\  C  e.  RR+ )  ->  ( ( A  ^c  C )  <  ( B  ^c  C )  <-> 
( exp `  ( C  x.  ( log `  A ) ) )  <  ( exp `  ( C  x.  ( log `  B ) ) ) ) )
2410, 17, 233bitr4d 219 1  |-  ( ( A  e.  RR+  /\  B  e.  RR+  /\  C  e.  RR+ )  ->  ( A  <  B  <->  ( A  ^c  C )  <  ( B  ^c  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    /\ w3a 967    = wceq 1342    e. wcel 2135   class class class wbr 3976   ` cfv 5182  (class class class)co 5836   CCcc 7742   RRcr 7743    x. cmul 7749    < clt 7924   RR+crp 9580   expce 11569   logclog 13318    ^c ccxp 13319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-iinf 4559  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-mulrcl 7843  ax-addcom 7844  ax-mulcom 7845  ax-addass 7846  ax-mulass 7847  ax-distr 7848  ax-i2m1 7849  ax-0lt1 7850  ax-1rid 7851  ax-0id 7852  ax-rnegex 7853  ax-precex 7854  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-ltwlin 7857  ax-pre-lttrn 7858  ax-pre-apti 7859  ax-pre-ltadd 7860  ax-pre-mulgt0 7861  ax-pre-mulext 7862  ax-arch 7863  ax-caucvg 7864  ax-pre-suploc 7865  ax-addf 7866  ax-mulf 7867
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rmo 2450  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-if 3516  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-disj 3954  df-br 3977  df-opab 4038  df-mpt 4039  df-tr 4075  df-id 4265  df-po 4268  df-iso 4269  df-iord 4338  df-on 4340  df-ilim 4341  df-suc 4343  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-isom 5191  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-of 6044  df-1st 6100  df-2nd 6101  df-recs 6264  df-irdg 6329  df-frec 6350  df-1o 6375  df-oadd 6379  df-er 6492  df-map 6607  df-pm 6608  df-en 6698  df-dom 6699  df-fin 6700  df-sup 6940  df-inf 6941  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-sub 8062  df-neg 8063  df-reap 8464  df-ap 8471  df-div 8560  df-inn 8849  df-2 8907  df-3 8908  df-4 8909  df-n0 9106  df-z 9183  df-uz 9458  df-q 9549  df-rp 9581  df-xneg 9699  df-xadd 9700  df-ioo 9819  df-ico 9821  df-icc 9822  df-fz 9936  df-fzo 10068  df-seqfrec 10371  df-exp 10445  df-fac 10628  df-bc 10650  df-ihash 10678  df-shft 10743  df-cj 10770  df-re 10771  df-im 10772  df-rsqrt 10926  df-abs 10927  df-clim 11206  df-sumdc 11281  df-ef 11575  df-e 11576  df-rest 12494  df-topgen 12513  df-psmet 12528  df-xmet 12529  df-met 12530  df-bl 12531  df-mopn 12532  df-top 12537  df-topon 12550  df-bases 12582  df-ntr 12637  df-cn 12729  df-cnp 12730  df-tx 12794  df-cncf 13099  df-limced 13166  df-dvap 13167  df-relog 13320  df-rpcxp 13321
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator