| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sralmod | Unicode version | ||
| Description: The subring algebra is a left module. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| Ref | Expression |
|---|---|
| sralmod.a |
|
| Ref | Expression |
|---|---|
| sralmod |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sralmod.a |
. . . 4
| |
| 2 | 1 | a1i 9 |
. . 3
|
| 3 | eqid 2196 |
. . . 4
| |
| 4 | 3 | subrgss 13856 |
. . 3
|
| 5 | subrgrcl 13860 |
. . 3
| |
| 6 | 2, 4, 5 | srabaseg 14073 |
. 2
|
| 7 | 2, 4, 5 | sraaddgg 14074 |
. 2
|
| 8 | 2, 4, 5 | srascag 14076 |
. 2
|
| 9 | 2, 4, 5 | sravscag 14077 |
. 2
|
| 10 | eqidd 2197 |
. . 3
| |
| 11 | eqidd 2197 |
. . 3
| |
| 12 | id 19 |
. . 3
| |
| 13 | 10, 11, 5, 12 | ressbasd 12772 |
. 2
|
| 14 | eqidd 2197 |
. . 3
| |
| 15 | 10, 14, 12, 5 | ressplusgd 12833 |
. 2
|
| 16 | eqid 2196 |
. . . 4
| |
| 17 | eqid 2196 |
. . . 4
| |
| 18 | 16, 17 | ressmulrg 12849 |
. . 3
|
| 19 | 5, 18 | mpdan 421 |
. 2
|
| 20 | eqid 2196 |
. . 3
| |
| 21 | 16, 20 | subrg1 13865 |
. 2
|
| 22 | 16 | subrgring 13858 |
. 2
|
| 23 | 5 | ringgrpd 13639 |
. . 3
|
| 24 | 7 | oveqdr 5953 |
. . . 4
|
| 25 | 11, 6, 24 | grppropd 13221 |
. . 3
|
| 26 | 23, 25 | mpbid 147 |
. 2
|
| 27 | 5 | 3ad2ant1 1020 |
. . 3
|
| 28 | elinel2 3351 |
. . . 4
| |
| 29 | 28 | 3ad2ant2 1021 |
. . 3
|
| 30 | simp3 1001 |
. . 3
| |
| 31 | 3, 17 | ringcl 13647 |
. . 3
|
| 32 | 27, 29, 30, 31 | syl3anc 1249 |
. 2
|
| 33 | 5 | adantr 276 |
. . 3
|
| 34 | simpr1 1005 |
. . . 4
| |
| 35 | 34 | elin2d 3354 |
. . 3
|
| 36 | simpr2 1006 |
. . 3
| |
| 37 | simpr3 1007 |
. . 3
| |
| 38 | eqid 2196 |
. . . 4
| |
| 39 | 3, 38, 17 | ringdi 13652 |
. . 3
|
| 40 | 33, 35, 36, 37, 39 | syl13anc 1251 |
. 2
|
| 41 | 5 | adantr 276 |
. . 3
|
| 42 | simpr1 1005 |
. . . 4
| |
| 43 | 42 | elin2d 3354 |
. . 3
|
| 44 | simpr2 1006 |
. . . 4
| |
| 45 | 44 | elin2d 3354 |
. . 3
|
| 46 | simpr3 1007 |
. . 3
| |
| 47 | 3, 38, 17 | ringdir 13653 |
. . 3
|
| 48 | 41, 43, 45, 46, 47 | syl13anc 1251 |
. 2
|
| 49 | 3, 17 | ringass 13650 |
. . 3
|
| 50 | 41, 43, 45, 46, 49 | syl13anc 1251 |
. 2
|
| 51 | 3, 17, 20 | ringlidm 13657 |
. . 3
|
| 52 | 5, 51 | sylan 283 |
. 2
|
| 53 | 6, 7, 8, 9, 13, 15, 19, 21, 22, 26, 32, 40, 48, 50, 52 | islmodd 13927 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7989 ax-resscn 7990 ax-1cn 7991 ax-1re 7992 ax-icn 7993 ax-addcl 7994 ax-addrcl 7995 ax-mulcl 7996 ax-addcom 7998 ax-addass 8000 ax-i2m1 8003 ax-0lt1 8004 ax-0id 8006 ax-rnegex 8007 ax-pre-ltirr 8010 ax-pre-lttrn 8012 ax-pre-ltadd 8014 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8082 df-mnf 8083 df-ltxr 8085 df-inn 9010 df-2 9068 df-3 9069 df-4 9070 df-5 9071 df-6 9072 df-7 9073 df-8 9074 df-ndx 12708 df-slot 12709 df-base 12711 df-sets 12712 df-iress 12713 df-plusg 12795 df-mulr 12796 df-sca 12798 df-vsca 12799 df-ip 12800 df-0g 12962 df-mgm 13060 df-sgrp 13106 df-mnd 13121 df-grp 13207 df-subg 13378 df-mgp 13555 df-ur 13594 df-ring 13632 df-subrg 13853 df-lmod 13923 df-sra 14069 |
| This theorem is referenced by: rlmlmod 14098 |
| Copyright terms: Public domain | W3C validator |