| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sralmod | Unicode version | ||
| Description: The subring algebra is a left module. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| Ref | Expression |
|---|---|
| sralmod.a |
|
| Ref | Expression |
|---|---|
| sralmod |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sralmod.a |
. . . 4
| |
| 2 | 1 | a1i 9 |
. . 3
|
| 3 | eqid 2229 |
. . . 4
| |
| 4 | 3 | subrgss 14194 |
. . 3
|
| 5 | subrgrcl 14198 |
. . 3
| |
| 6 | 2, 4, 5 | srabaseg 14411 |
. 2
|
| 7 | 2, 4, 5 | sraaddgg 14412 |
. 2
|
| 8 | 2, 4, 5 | srascag 14414 |
. 2
|
| 9 | 2, 4, 5 | sravscag 14415 |
. 2
|
| 10 | eqidd 2230 |
. . 3
| |
| 11 | eqidd 2230 |
. . 3
| |
| 12 | id 19 |
. . 3
| |
| 13 | 10, 11, 5, 12 | ressbasd 13108 |
. 2
|
| 14 | eqidd 2230 |
. . 3
| |
| 15 | 10, 14, 12, 5 | ressplusgd 13170 |
. 2
|
| 16 | eqid 2229 |
. . . 4
| |
| 17 | eqid 2229 |
. . . 4
| |
| 18 | 16, 17 | ressmulrg 13186 |
. . 3
|
| 19 | 5, 18 | mpdan 421 |
. 2
|
| 20 | eqid 2229 |
. . 3
| |
| 21 | 16, 20 | subrg1 14203 |
. 2
|
| 22 | 16 | subrgring 14196 |
. 2
|
| 23 | 5 | ringgrpd 13976 |
. . 3
|
| 24 | 7 | oveqdr 6035 |
. . . 4
|
| 25 | 11, 6, 24 | grppropd 13558 |
. . 3
|
| 26 | 23, 25 | mpbid 147 |
. 2
|
| 27 | 5 | 3ad2ant1 1042 |
. . 3
|
| 28 | elinel2 3391 |
. . . 4
| |
| 29 | 28 | 3ad2ant2 1043 |
. . 3
|
| 30 | simp3 1023 |
. . 3
| |
| 31 | 3, 17 | ringcl 13984 |
. . 3
|
| 32 | 27, 29, 30, 31 | syl3anc 1271 |
. 2
|
| 33 | 5 | adantr 276 |
. . 3
|
| 34 | simpr1 1027 |
. . . 4
| |
| 35 | 34 | elin2d 3394 |
. . 3
|
| 36 | simpr2 1028 |
. . 3
| |
| 37 | simpr3 1029 |
. . 3
| |
| 38 | eqid 2229 |
. . . 4
| |
| 39 | 3, 38, 17 | ringdi 13989 |
. . 3
|
| 40 | 33, 35, 36, 37, 39 | syl13anc 1273 |
. 2
|
| 41 | 5 | adantr 276 |
. . 3
|
| 42 | simpr1 1027 |
. . . 4
| |
| 43 | 42 | elin2d 3394 |
. . 3
|
| 44 | simpr2 1028 |
. . . 4
| |
| 45 | 44 | elin2d 3394 |
. . 3
|
| 46 | simpr3 1029 |
. . 3
| |
| 47 | 3, 38, 17 | ringdir 13990 |
. . 3
|
| 48 | 41, 43, 45, 46, 47 | syl13anc 1273 |
. 2
|
| 49 | 3, 17 | ringass 13987 |
. . 3
|
| 50 | 41, 43, 45, 46, 49 | syl13anc 1273 |
. 2
|
| 51 | 3, 17, 20 | ringlidm 13994 |
. . 3
|
| 52 | 5, 51 | sylan 283 |
. 2
|
| 53 | 6, 7, 8, 9, 13, 15, 19, 21, 22, 26, 32, 40, 48, 50, 52 | islmodd 14265 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-addass 8109 ax-i2m1 8112 ax-0lt1 8113 ax-0id 8115 ax-rnegex 8116 ax-pre-ltirr 8119 ax-pre-lttrn 8121 ax-pre-ltadd 8123 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-pnf 8191 df-mnf 8192 df-ltxr 8194 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-5 9180 df-6 9181 df-7 9182 df-8 9183 df-ndx 13043 df-slot 13044 df-base 13046 df-sets 13047 df-iress 13048 df-plusg 13131 df-mulr 13132 df-sca 13134 df-vsca 13135 df-ip 13136 df-0g 13299 df-mgm 13397 df-sgrp 13443 df-mnd 13458 df-grp 13544 df-subg 13715 df-mgp 13892 df-ur 13931 df-ring 13969 df-subrg 14191 df-lmod 14261 df-sra 14407 |
| This theorem is referenced by: rlmlmod 14436 |
| Copyright terms: Public domain | W3C validator |