ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sralmod Unicode version

Theorem sralmod 14262
Description: The subring algebra is a left module. (Contributed by Stefan O'Rear, 27-Nov-2014.)
Hypothesis
Ref Expression
sralmod.a  |-  A  =  ( (subringAlg  `  W ) `
 S )
Assertion
Ref Expression
sralmod  |-  ( S  e.  (SubRing `  W
)  ->  A  e.  LMod )

Proof of Theorem sralmod
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sralmod.a . . . 4  |-  A  =  ( (subringAlg  `  W ) `
 S )
21a1i 9 . . 3  |-  ( S  e.  (SubRing `  W
)  ->  A  =  ( (subringAlg  `  W ) `  S ) )
3 eqid 2206 . . . 4  |-  ( Base `  W )  =  (
Base `  W )
43subrgss 14034 . . 3  |-  ( S  e.  (SubRing `  W
)  ->  S  C_  ( Base `  W ) )
5 subrgrcl 14038 . . 3  |-  ( S  e.  (SubRing `  W
)  ->  W  e.  Ring )
62, 4, 5srabaseg 14251 . 2  |-  ( S  e.  (SubRing `  W
)  ->  ( Base `  W )  =  (
Base `  A )
)
72, 4, 5sraaddgg 14252 . 2  |-  ( S  e.  (SubRing `  W
)  ->  ( +g  `  W )  =  ( +g  `  A ) )
82, 4, 5srascag 14254 . 2  |-  ( S  e.  (SubRing `  W
)  ->  ( Ws  S
)  =  (Scalar `  A ) )
92, 4, 5sravscag 14255 . 2  |-  ( S  e.  (SubRing `  W
)  ->  ( .r `  W )  =  ( .s `  A ) )
10 eqidd 2207 . . 3  |-  ( S  e.  (SubRing `  W
)  ->  ( Ws  S
)  =  ( Ws  S ) )
11 eqidd 2207 . . 3  |-  ( S  e.  (SubRing `  W
)  ->  ( Base `  W )  =  (
Base `  W )
)
12 id 19 . . 3  |-  ( S  e.  (SubRing `  W
)  ->  S  e.  (SubRing `  W ) )
1310, 11, 5, 12ressbasd 12949 . 2  |-  ( S  e.  (SubRing `  W
)  ->  ( S  i^i  ( Base `  W
) )  =  (
Base `  ( Ws  S
) ) )
14 eqidd 2207 . . 3  |-  ( S  e.  (SubRing `  W
)  ->  ( +g  `  W )  =  ( +g  `  W ) )
1510, 14, 12, 5ressplusgd 13011 . 2  |-  ( S  e.  (SubRing `  W
)  ->  ( +g  `  W )  =  ( +g  `  ( Ws  S ) ) )
16 eqid 2206 . . . 4  |-  ( Ws  S )  =  ( Ws  S )
17 eqid 2206 . . . 4  |-  ( .r
`  W )  =  ( .r `  W
)
1816, 17ressmulrg 13027 . . 3  |-  ( ( S  e.  (SubRing `  W
)  /\  W  e.  Ring )  ->  ( .r `  W )  =  ( .r `  ( Ws  S ) ) )
195, 18mpdan 421 . 2  |-  ( S  e.  (SubRing `  W
)  ->  ( .r `  W )  =  ( .r `  ( Ws  S ) ) )
20 eqid 2206 . . 3  |-  ( 1r
`  W )  =  ( 1r `  W
)
2116, 20subrg1 14043 . 2  |-  ( S  e.  (SubRing `  W
)  ->  ( 1r `  W )  =  ( 1r `  ( Ws  S ) ) )
2216subrgring 14036 . 2  |-  ( S  e.  (SubRing `  W
)  ->  ( Ws  S
)  e.  Ring )
235ringgrpd 13817 . . 3  |-  ( S  e.  (SubRing `  W
)  ->  W  e.  Grp )
247oveqdr 5982 . . . 4  |-  ( ( S  e.  (SubRing `  W
)  /\  ( x  e.  ( Base `  W
)  /\  y  e.  ( Base `  W )
) )  ->  (
x ( +g  `  W
) y )  =  ( x ( +g  `  A ) y ) )
2511, 6, 24grppropd 13399 . . 3  |-  ( S  e.  (SubRing `  W
)  ->  ( W  e.  Grp  <->  A  e.  Grp ) )
2623, 25mpbid 147 . 2  |-  ( S  e.  (SubRing `  W
)  ->  A  e.  Grp )
2753ad2ant1 1021 . . 3  |-  ( ( S  e.  (SubRing `  W
)  /\  x  e.  ( S  i^i  ( Base `  W ) )  /\  y  e.  (
Base `  W )
)  ->  W  e.  Ring )
28 elinel2 3362 . . . 4  |-  ( x  e.  ( S  i^i  ( Base `  W )
)  ->  x  e.  ( Base `  W )
)
29283ad2ant2 1022 . . 3  |-  ( ( S  e.  (SubRing `  W
)  /\  x  e.  ( S  i^i  ( Base `  W ) )  /\  y  e.  (
Base `  W )
)  ->  x  e.  ( Base `  W )
)
30 simp3 1002 . . 3  |-  ( ( S  e.  (SubRing `  W
)  /\  x  e.  ( S  i^i  ( Base `  W ) )  /\  y  e.  (
Base `  W )
)  ->  y  e.  ( Base `  W )
)
313, 17ringcl 13825 . . 3  |-  ( ( W  e.  Ring  /\  x  e.  ( Base `  W
)  /\  y  e.  ( Base `  W )
)  ->  ( x
( .r `  W
) y )  e.  ( Base `  W
) )
3227, 29, 30, 31syl3anc 1250 . 2  |-  ( ( S  e.  (SubRing `  W
)  /\  x  e.  ( S  i^i  ( Base `  W ) )  /\  y  e.  (
Base `  W )
)  ->  ( x
( .r `  W
) y )  e.  ( Base `  W
) )
335adantr 276 . . 3  |-  ( ( S  e.  (SubRing `  W
)  /\  ( x  e.  ( S  i^i  ( Base `  W ) )  /\  y  e.  (
Base `  W )  /\  z  e.  ( Base `  W ) ) )  ->  W  e.  Ring )
34 simpr1 1006 . . . 4  |-  ( ( S  e.  (SubRing `  W
)  /\  ( x  e.  ( S  i^i  ( Base `  W ) )  /\  y  e.  (
Base `  W )  /\  z  e.  ( Base `  W ) ) )  ->  x  e.  ( S  i^i  ( Base `  W ) ) )
3534elin2d 3365 . . 3  |-  ( ( S  e.  (SubRing `  W
)  /\  ( x  e.  ( S  i^i  ( Base `  W ) )  /\  y  e.  (
Base `  W )  /\  z  e.  ( Base `  W ) ) )  ->  x  e.  ( Base `  W )
)
36 simpr2 1007 . . 3  |-  ( ( S  e.  (SubRing `  W
)  /\  ( x  e.  ( S  i^i  ( Base `  W ) )  /\  y  e.  (
Base `  W )  /\  z  e.  ( Base `  W ) ) )  ->  y  e.  ( Base `  W )
)
37 simpr3 1008 . . 3  |-  ( ( S  e.  (SubRing `  W
)  /\  ( x  e.  ( S  i^i  ( Base `  W ) )  /\  y  e.  (
Base `  W )  /\  z  e.  ( Base `  W ) ) )  ->  z  e.  ( Base `  W )
)
38 eqid 2206 . . . 4  |-  ( +g  `  W )  =  ( +g  `  W )
393, 38, 17ringdi 13830 . . 3  |-  ( ( W  e.  Ring  /\  (
x  e.  ( Base `  W )  /\  y  e.  ( Base `  W
)  /\  z  e.  ( Base `  W )
) )  ->  (
x ( .r `  W ) ( y ( +g  `  W
) z ) )  =  ( ( x ( .r `  W
) y ) ( +g  `  W ) ( x ( .r
`  W ) z ) ) )
4033, 35, 36, 37, 39syl13anc 1252 . 2  |-  ( ( S  e.  (SubRing `  W
)  /\  ( x  e.  ( S  i^i  ( Base `  W ) )  /\  y  e.  (
Base `  W )  /\  z  e.  ( Base `  W ) ) )  ->  ( x
( .r `  W
) ( y ( +g  `  W ) z ) )  =  ( ( x ( .r `  W ) y ) ( +g  `  W ) ( x ( .r `  W
) z ) ) )
415adantr 276 . . 3  |-  ( ( S  e.  (SubRing `  W
)  /\  ( x  e.  ( S  i^i  ( Base `  W ) )  /\  y  e.  ( S  i^i  ( Base `  W ) )  /\  z  e.  ( Base `  W ) ) )  ->  W  e.  Ring )
42 simpr1 1006 . . . 4  |-  ( ( S  e.  (SubRing `  W
)  /\  ( x  e.  ( S  i^i  ( Base `  W ) )  /\  y  e.  ( S  i^i  ( Base `  W ) )  /\  z  e.  ( Base `  W ) ) )  ->  x  e.  ( S  i^i  ( Base `  W ) ) )
4342elin2d 3365 . . 3  |-  ( ( S  e.  (SubRing `  W
)  /\  ( x  e.  ( S  i^i  ( Base `  W ) )  /\  y  e.  ( S  i^i  ( Base `  W ) )  /\  z  e.  ( Base `  W ) ) )  ->  x  e.  (
Base `  W )
)
44 simpr2 1007 . . . 4  |-  ( ( S  e.  (SubRing `  W
)  /\  ( x  e.  ( S  i^i  ( Base `  W ) )  /\  y  e.  ( S  i^i  ( Base `  W ) )  /\  z  e.  ( Base `  W ) ) )  ->  y  e.  ( S  i^i  ( Base `  W ) ) )
4544elin2d 3365 . . 3  |-  ( ( S  e.  (SubRing `  W
)  /\  ( x  e.  ( S  i^i  ( Base `  W ) )  /\  y  e.  ( S  i^i  ( Base `  W ) )  /\  z  e.  ( Base `  W ) ) )  ->  y  e.  (
Base `  W )
)
46 simpr3 1008 . . 3  |-  ( ( S  e.  (SubRing `  W
)  /\  ( x  e.  ( S  i^i  ( Base `  W ) )  /\  y  e.  ( S  i^i  ( Base `  W ) )  /\  z  e.  ( Base `  W ) ) )  ->  z  e.  (
Base `  W )
)
473, 38, 17ringdir 13831 . . 3  |-  ( ( W  e.  Ring  /\  (
x  e.  ( Base `  W )  /\  y  e.  ( Base `  W
)  /\  z  e.  ( Base `  W )
) )  ->  (
( x ( +g  `  W ) y ) ( .r `  W
) z )  =  ( ( x ( .r `  W ) z ) ( +g  `  W ) ( y ( .r `  W
) z ) ) )
4841, 43, 45, 46, 47syl13anc 1252 . 2  |-  ( ( S  e.  (SubRing `  W
)  /\  ( x  e.  ( S  i^i  ( Base `  W ) )  /\  y  e.  ( S  i^i  ( Base `  W ) )  /\  z  e.  ( Base `  W ) ) )  ->  ( ( x ( +g  `  W
) y ) ( .r `  W ) z )  =  ( ( x ( .r
`  W ) z ) ( +g  `  W
) ( y ( .r `  W ) z ) ) )
493, 17ringass 13828 . . 3  |-  ( ( W  e.  Ring  /\  (
x  e.  ( Base `  W )  /\  y  e.  ( Base `  W
)  /\  z  e.  ( Base `  W )
) )  ->  (
( x ( .r
`  W ) y ) ( .r `  W ) z )  =  ( x ( .r `  W ) ( y ( .r
`  W ) z ) ) )
5041, 43, 45, 46, 49syl13anc 1252 . 2  |-  ( ( S  e.  (SubRing `  W
)  /\  ( x  e.  ( S  i^i  ( Base `  W ) )  /\  y  e.  ( S  i^i  ( Base `  W ) )  /\  z  e.  ( Base `  W ) ) )  ->  ( ( x ( .r `  W
) y ) ( .r `  W ) z )  =  ( x ( .r `  W ) ( y ( .r `  W
) z ) ) )
513, 17, 20ringlidm 13835 . . 3  |-  ( ( W  e.  Ring  /\  x  e.  ( Base `  W
) )  ->  (
( 1r `  W
) ( .r `  W ) x )  =  x )
525, 51sylan 283 . 2  |-  ( ( S  e.  (SubRing `  W
)  /\  x  e.  ( Base `  W )
)  ->  ( ( 1r `  W ) ( .r `  W ) x )  =  x )
536, 7, 8, 9, 13, 15, 19, 21, 22, 26, 32, 40, 48, 50, 52islmodd 14105 1  |-  ( S  e.  (SubRing `  W
)  ->  A  e.  LMod )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2177    i^i cin 3167   ` cfv 5277  (class class class)co 5954   Basecbs 12882   ↾s cress 12883   +g cplusg 12959   .rcmulr 12960   Grpcgrp 13382   1rcur 13771   Ringcrg 13808  SubRingcsubrg 14029   LModclmod 14099  subringAlg csra 14245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4164  ax-sep 4167  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-cnex 8029  ax-resscn 8030  ax-1cn 8031  ax-1re 8032  ax-icn 8033  ax-addcl 8034  ax-addrcl 8035  ax-mulcl 8036  ax-addcom 8038  ax-addass 8040  ax-i2m1 8043  ax-0lt1 8044  ax-0id 8046  ax-rnegex 8047  ax-pre-ltirr 8050  ax-pre-lttrn 8052  ax-pre-ltadd 8054
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-iun 3932  df-br 4049  df-opab 4111  df-mpt 4112  df-id 4345  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-fv 5285  df-riota 5909  df-ov 5957  df-oprab 5958  df-mpo 5959  df-pnf 8122  df-mnf 8123  df-ltxr 8125  df-inn 9050  df-2 9108  df-3 9109  df-4 9110  df-5 9111  df-6 9112  df-7 9113  df-8 9114  df-ndx 12885  df-slot 12886  df-base 12888  df-sets 12889  df-iress 12890  df-plusg 12972  df-mulr 12973  df-sca 12975  df-vsca 12976  df-ip 12977  df-0g 13140  df-mgm 13238  df-sgrp 13284  df-mnd 13299  df-grp 13385  df-subg 13556  df-mgp 13733  df-ur 13772  df-ring 13810  df-subrg 14031  df-lmod 14101  df-sra 14247
This theorem is referenced by:  rlmlmod  14276
  Copyright terms: Public domain W3C validator