ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sralmod Unicode version

Theorem sralmod 13949
Description: The subring algebra is a left module. (Contributed by Stefan O'Rear, 27-Nov-2014.)
Hypothesis
Ref Expression
sralmod.a  |-  A  =  ( (subringAlg  `  W ) `
 S )
Assertion
Ref Expression
sralmod  |-  ( S  e.  (SubRing `  W
)  ->  A  e.  LMod )

Proof of Theorem sralmod
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sralmod.a . . . 4  |-  A  =  ( (subringAlg  `  W ) `
 S )
21a1i 9 . . 3  |-  ( S  e.  (SubRing `  W
)  ->  A  =  ( (subringAlg  `  W ) `  S ) )
3 eqid 2193 . . . 4  |-  ( Base `  W )  =  (
Base `  W )
43subrgss 13721 . . 3  |-  ( S  e.  (SubRing `  W
)  ->  S  C_  ( Base `  W ) )
5 subrgrcl 13725 . . 3  |-  ( S  e.  (SubRing `  W
)  ->  W  e.  Ring )
62, 4, 5srabaseg 13938 . 2  |-  ( S  e.  (SubRing `  W
)  ->  ( Base `  W )  =  (
Base `  A )
)
72, 4, 5sraaddgg 13939 . 2  |-  ( S  e.  (SubRing `  W
)  ->  ( +g  `  W )  =  ( +g  `  A ) )
82, 4, 5srascag 13941 . 2  |-  ( S  e.  (SubRing `  W
)  ->  ( Ws  S
)  =  (Scalar `  A ) )
92, 4, 5sravscag 13942 . 2  |-  ( S  e.  (SubRing `  W
)  ->  ( .r `  W )  =  ( .s `  A ) )
10 eqidd 2194 . . 3  |-  ( S  e.  (SubRing `  W
)  ->  ( Ws  S
)  =  ( Ws  S ) )
11 eqidd 2194 . . 3  |-  ( S  e.  (SubRing `  W
)  ->  ( Base `  W )  =  (
Base `  W )
)
12 id 19 . . 3  |-  ( S  e.  (SubRing `  W
)  ->  S  e.  (SubRing `  W ) )
1310, 11, 5, 12ressbasd 12688 . 2  |-  ( S  e.  (SubRing `  W
)  ->  ( S  i^i  ( Base `  W
) )  =  (
Base `  ( Ws  S
) ) )
14 eqidd 2194 . . 3  |-  ( S  e.  (SubRing `  W
)  ->  ( +g  `  W )  =  ( +g  `  W ) )
1510, 14, 12, 5ressplusgd 12749 . 2  |-  ( S  e.  (SubRing `  W
)  ->  ( +g  `  W )  =  ( +g  `  ( Ws  S ) ) )
16 eqid 2193 . . . 4  |-  ( Ws  S )  =  ( Ws  S )
17 eqid 2193 . . . 4  |-  ( .r
`  W )  =  ( .r `  W
)
1816, 17ressmulrg 12765 . . 3  |-  ( ( S  e.  (SubRing `  W
)  /\  W  e.  Ring )  ->  ( .r `  W )  =  ( .r `  ( Ws  S ) ) )
195, 18mpdan 421 . 2  |-  ( S  e.  (SubRing `  W
)  ->  ( .r `  W )  =  ( .r `  ( Ws  S ) ) )
20 eqid 2193 . . 3  |-  ( 1r
`  W )  =  ( 1r `  W
)
2116, 20subrg1 13730 . 2  |-  ( S  e.  (SubRing `  W
)  ->  ( 1r `  W )  =  ( 1r `  ( Ws  S ) ) )
2216subrgring 13723 . 2  |-  ( S  e.  (SubRing `  W
)  ->  ( Ws  S
)  e.  Ring )
235ringgrpd 13504 . . 3  |-  ( S  e.  (SubRing `  W
)  ->  W  e.  Grp )
247oveqdr 5947 . . . 4  |-  ( ( S  e.  (SubRing `  W
)  /\  ( x  e.  ( Base `  W
)  /\  y  e.  ( Base `  W )
) )  ->  (
x ( +g  `  W
) y )  =  ( x ( +g  `  A ) y ) )
2511, 6, 24grppropd 13092 . . 3  |-  ( S  e.  (SubRing `  W
)  ->  ( W  e.  Grp  <->  A  e.  Grp ) )
2623, 25mpbid 147 . 2  |-  ( S  e.  (SubRing `  W
)  ->  A  e.  Grp )
2753ad2ant1 1020 . . 3  |-  ( ( S  e.  (SubRing `  W
)  /\  x  e.  ( S  i^i  ( Base `  W ) )  /\  y  e.  (
Base `  W )
)  ->  W  e.  Ring )
28 elinel2 3347 . . . 4  |-  ( x  e.  ( S  i^i  ( Base `  W )
)  ->  x  e.  ( Base `  W )
)
29283ad2ant2 1021 . . 3  |-  ( ( S  e.  (SubRing `  W
)  /\  x  e.  ( S  i^i  ( Base `  W ) )  /\  y  e.  (
Base `  W )
)  ->  x  e.  ( Base `  W )
)
30 simp3 1001 . . 3  |-  ( ( S  e.  (SubRing `  W
)  /\  x  e.  ( S  i^i  ( Base `  W ) )  /\  y  e.  (
Base `  W )
)  ->  y  e.  ( Base `  W )
)
313, 17ringcl 13512 . . 3  |-  ( ( W  e.  Ring  /\  x  e.  ( Base `  W
)  /\  y  e.  ( Base `  W )
)  ->  ( x
( .r `  W
) y )  e.  ( Base `  W
) )
3227, 29, 30, 31syl3anc 1249 . 2  |-  ( ( S  e.  (SubRing `  W
)  /\  x  e.  ( S  i^i  ( Base `  W ) )  /\  y  e.  (
Base `  W )
)  ->  ( x
( .r `  W
) y )  e.  ( Base `  W
) )
335adantr 276 . . 3  |-  ( ( S  e.  (SubRing `  W
)  /\  ( x  e.  ( S  i^i  ( Base `  W ) )  /\  y  e.  (
Base `  W )  /\  z  e.  ( Base `  W ) ) )  ->  W  e.  Ring )
34 simpr1 1005 . . . 4  |-  ( ( S  e.  (SubRing `  W
)  /\  ( x  e.  ( S  i^i  ( Base `  W ) )  /\  y  e.  (
Base `  W )  /\  z  e.  ( Base `  W ) ) )  ->  x  e.  ( S  i^i  ( Base `  W ) ) )
3534elin2d 3350 . . 3  |-  ( ( S  e.  (SubRing `  W
)  /\  ( x  e.  ( S  i^i  ( Base `  W ) )  /\  y  e.  (
Base `  W )  /\  z  e.  ( Base `  W ) ) )  ->  x  e.  ( Base `  W )
)
36 simpr2 1006 . . 3  |-  ( ( S  e.  (SubRing `  W
)  /\  ( x  e.  ( S  i^i  ( Base `  W ) )  /\  y  e.  (
Base `  W )  /\  z  e.  ( Base `  W ) ) )  ->  y  e.  ( Base `  W )
)
37 simpr3 1007 . . 3  |-  ( ( S  e.  (SubRing `  W
)  /\  ( x  e.  ( S  i^i  ( Base `  W ) )  /\  y  e.  (
Base `  W )  /\  z  e.  ( Base `  W ) ) )  ->  z  e.  ( Base `  W )
)
38 eqid 2193 . . . 4  |-  ( +g  `  W )  =  ( +g  `  W )
393, 38, 17ringdi 13517 . . 3  |-  ( ( W  e.  Ring  /\  (
x  e.  ( Base `  W )  /\  y  e.  ( Base `  W
)  /\  z  e.  ( Base `  W )
) )  ->  (
x ( .r `  W ) ( y ( +g  `  W
) z ) )  =  ( ( x ( .r `  W
) y ) ( +g  `  W ) ( x ( .r
`  W ) z ) ) )
4033, 35, 36, 37, 39syl13anc 1251 . 2  |-  ( ( S  e.  (SubRing `  W
)  /\  ( x  e.  ( S  i^i  ( Base `  W ) )  /\  y  e.  (
Base `  W )  /\  z  e.  ( Base `  W ) ) )  ->  ( x
( .r `  W
) ( y ( +g  `  W ) z ) )  =  ( ( x ( .r `  W ) y ) ( +g  `  W ) ( x ( .r `  W
) z ) ) )
415adantr 276 . . 3  |-  ( ( S  e.  (SubRing `  W
)  /\  ( x  e.  ( S  i^i  ( Base `  W ) )  /\  y  e.  ( S  i^i  ( Base `  W ) )  /\  z  e.  ( Base `  W ) ) )  ->  W  e.  Ring )
42 simpr1 1005 . . . 4  |-  ( ( S  e.  (SubRing `  W
)  /\  ( x  e.  ( S  i^i  ( Base `  W ) )  /\  y  e.  ( S  i^i  ( Base `  W ) )  /\  z  e.  ( Base `  W ) ) )  ->  x  e.  ( S  i^i  ( Base `  W ) ) )
4342elin2d 3350 . . 3  |-  ( ( S  e.  (SubRing `  W
)  /\  ( x  e.  ( S  i^i  ( Base `  W ) )  /\  y  e.  ( S  i^i  ( Base `  W ) )  /\  z  e.  ( Base `  W ) ) )  ->  x  e.  (
Base `  W )
)
44 simpr2 1006 . . . 4  |-  ( ( S  e.  (SubRing `  W
)  /\  ( x  e.  ( S  i^i  ( Base `  W ) )  /\  y  e.  ( S  i^i  ( Base `  W ) )  /\  z  e.  ( Base `  W ) ) )  ->  y  e.  ( S  i^i  ( Base `  W ) ) )
4544elin2d 3350 . . 3  |-  ( ( S  e.  (SubRing `  W
)  /\  ( x  e.  ( S  i^i  ( Base `  W ) )  /\  y  e.  ( S  i^i  ( Base `  W ) )  /\  z  e.  ( Base `  W ) ) )  ->  y  e.  (
Base `  W )
)
46 simpr3 1007 . . 3  |-  ( ( S  e.  (SubRing `  W
)  /\  ( x  e.  ( S  i^i  ( Base `  W ) )  /\  y  e.  ( S  i^i  ( Base `  W ) )  /\  z  e.  ( Base `  W ) ) )  ->  z  e.  (
Base `  W )
)
473, 38, 17ringdir 13518 . . 3  |-  ( ( W  e.  Ring  /\  (
x  e.  ( Base `  W )  /\  y  e.  ( Base `  W
)  /\  z  e.  ( Base `  W )
) )  ->  (
( x ( +g  `  W ) y ) ( .r `  W
) z )  =  ( ( x ( .r `  W ) z ) ( +g  `  W ) ( y ( .r `  W
) z ) ) )
4841, 43, 45, 46, 47syl13anc 1251 . 2  |-  ( ( S  e.  (SubRing `  W
)  /\  ( x  e.  ( S  i^i  ( Base `  W ) )  /\  y  e.  ( S  i^i  ( Base `  W ) )  /\  z  e.  ( Base `  W ) ) )  ->  ( ( x ( +g  `  W
) y ) ( .r `  W ) z )  =  ( ( x ( .r
`  W ) z ) ( +g  `  W
) ( y ( .r `  W ) z ) ) )
493, 17ringass 13515 . . 3  |-  ( ( W  e.  Ring  /\  (
x  e.  ( Base `  W )  /\  y  e.  ( Base `  W
)  /\  z  e.  ( Base `  W )
) )  ->  (
( x ( .r
`  W ) y ) ( .r `  W ) z )  =  ( x ( .r `  W ) ( y ( .r
`  W ) z ) ) )
5041, 43, 45, 46, 49syl13anc 1251 . 2  |-  ( ( S  e.  (SubRing `  W
)  /\  ( x  e.  ( S  i^i  ( Base `  W ) )  /\  y  e.  ( S  i^i  ( Base `  W ) )  /\  z  e.  ( Base `  W ) ) )  ->  ( ( x ( .r `  W
) y ) ( .r `  W ) z )  =  ( x ( .r `  W ) ( y ( .r `  W
) z ) ) )
513, 17, 20ringlidm 13522 . . 3  |-  ( ( W  e.  Ring  /\  x  e.  ( Base `  W
) )  ->  (
( 1r `  W
) ( .r `  W ) x )  =  x )
525, 51sylan 283 . 2  |-  ( ( S  e.  (SubRing `  W
)  /\  x  e.  ( Base `  W )
)  ->  ( ( 1r `  W ) ( .r `  W ) x )  =  x )
536, 7, 8, 9, 13, 15, 19, 21, 22, 26, 32, 40, 48, 50, 52islmodd 13792 1  |-  ( S  e.  (SubRing `  W
)  ->  A  e.  LMod )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2164    i^i cin 3153   ` cfv 5255  (class class class)co 5919   Basecbs 12621   ↾s cress 12622   +g cplusg 12698   .rcmulr 12699   Grpcgrp 13075   1rcur 13458   Ringcrg 13495  SubRingcsubrg 13716   LModclmod 13786  subringAlg csra 13932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-5 9046  df-6 9047  df-7 9048  df-8 9049  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-iress 12629  df-plusg 12711  df-mulr 12712  df-sca 12714  df-vsca 12715  df-ip 12716  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-grp 13078  df-subg 13243  df-mgp 13420  df-ur 13459  df-ring 13497  df-subrg 13718  df-lmod 13788  df-sra 13934
This theorem is referenced by:  rlmlmod  13963
  Copyright terms: Public domain W3C validator