ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issubrgd Unicode version

Theorem issubrgd 14416
Description: Prove a subring by closure (definition version). (Contributed by Stefan O'Rear, 7-Dec-2014.)
Hypotheses
Ref Expression
issubrgd.s  |-  ( ph  ->  S  =  ( Is  D ) )
issubrgd.z  |-  ( ph  ->  .0.  =  ( 0g
`  I ) )
issubrgd.p  |-  ( ph  ->  .+  =  ( +g  `  I ) )
issubrgd.ss  |-  ( ph  ->  D  C_  ( Base `  I ) )
issubrgd.zcl  |-  ( ph  ->  .0.  e.  D )
issubrgd.acl  |-  ( (
ph  /\  x  e.  D  /\  y  e.  D
)  ->  ( x  .+  y )  e.  D
)
issubrgd.ncl  |-  ( (
ph  /\  x  e.  D )  ->  (
( invg `  I ) `  x
)  e.  D )
issubrgd.o  |-  ( ph  ->  .1.  =  ( 1r
`  I ) )
issubrgd.t  |-  ( ph  ->  .x.  =  ( .r
`  I ) )
issubrgd.ocl  |-  ( ph  ->  .1.  e.  D )
issubrgd.tcl  |-  ( (
ph  /\  x  e.  D  /\  y  e.  D
)  ->  ( x  .x.  y )  e.  D
)
issubrgd.g  |-  ( ph  ->  I  e.  Ring )
Assertion
Ref Expression
issubrgd  |-  ( ph  ->  D  e.  (SubRing `  I
) )
Distinct variable groups:    x, y,  .0.    x, D, y    x, I, y    x,  .+ , y    ph, x, y    x, S, y    x,  .x. , y
Allowed substitution hints:    .1. ( x, y)

Proof of Theorem issubrgd
StepHypRef Expression
1 issubrgd.s . . 3  |-  ( ph  ->  S  =  ( Is  D ) )
2 issubrgd.z . . 3  |-  ( ph  ->  .0.  =  ( 0g
`  I ) )
3 issubrgd.p . . 3  |-  ( ph  ->  .+  =  ( +g  `  I ) )
4 issubrgd.ss . . 3  |-  ( ph  ->  D  C_  ( Base `  I ) )
5 issubrgd.zcl . . 3  |-  ( ph  ->  .0.  e.  D )
6 issubrgd.acl . . 3  |-  ( (
ph  /\  x  e.  D  /\  y  e.  D
)  ->  ( x  .+  y )  e.  D
)
7 issubrgd.ncl . . 3  |-  ( (
ph  /\  x  e.  D )  ->  (
( invg `  I ) `  x
)  e.  D )
8 issubrgd.g . . . 4  |-  ( ph  ->  I  e.  Ring )
9 ringgrp 13964 . . . 4  |-  ( I  e.  Ring  ->  I  e. 
Grp )
108, 9syl 14 . . 3  |-  ( ph  ->  I  e.  Grp )
111, 2, 3, 4, 5, 6, 7, 10issubgrpd2 13727 . 2  |-  ( ph  ->  D  e.  (SubGrp `  I ) )
12 issubrgd.o . . 3  |-  ( ph  ->  .1.  =  ( 1r
`  I ) )
13 issubrgd.ocl . . 3  |-  ( ph  ->  .1.  e.  D )
1412, 13eqeltrrd 2307 . 2  |-  ( ph  ->  ( 1r `  I
)  e.  D )
15 issubrgd.t . . . . 5  |-  ( ph  ->  .x.  =  ( .r
`  I ) )
1615oveqdr 6029 . . . 4  |-  ( (
ph  /\  ( x  e.  D  /\  y  e.  D ) )  -> 
( x  .x.  y
)  =  ( x ( .r `  I
) y ) )
17 issubrgd.tcl . . . . 5  |-  ( (
ph  /\  x  e.  D  /\  y  e.  D
)  ->  ( x  .x.  y )  e.  D
)
18173expb 1228 . . . 4  |-  ( (
ph  /\  ( x  e.  D  /\  y  e.  D ) )  -> 
( x  .x.  y
)  e.  D )
1916, 18eqeltrrd 2307 . . 3  |-  ( (
ph  /\  ( x  e.  D  /\  y  e.  D ) )  -> 
( x ( .r
`  I ) y )  e.  D )
2019ralrimivva 2612 . 2  |-  ( ph  ->  A. x  e.  D  A. y  e.  D  ( x ( .r
`  I ) y )  e.  D )
21 eqid 2229 . . . 4  |-  ( Base `  I )  =  (
Base `  I )
22 eqid 2229 . . . 4  |-  ( 1r
`  I )  =  ( 1r `  I
)
23 eqid 2229 . . . 4  |-  ( .r
`  I )  =  ( .r `  I
)
2421, 22, 23issubrg2 14205 . . 3  |-  ( I  e.  Ring  ->  ( D  e.  (SubRing `  I
)  <->  ( D  e.  (SubGrp `  I )  /\  ( 1r `  I
)  e.  D  /\  A. x  e.  D  A. y  e.  D  (
x ( .r `  I ) y )  e.  D ) ) )
258, 24syl 14 . 2  |-  ( ph  ->  ( D  e.  (SubRing `  I )  <->  ( D  e.  (SubGrp `  I )  /\  ( 1r `  I
)  e.  D  /\  A. x  e.  D  A. y  e.  D  (
x ( .r `  I ) y )  e.  D ) ) )
2611, 14, 20, 25mpbir3and 1204 1  |-  ( ph  ->  D  e.  (SubRing `  I
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200   A.wral 2508    C_ wss 3197   ` cfv 5318  (class class class)co 6001   Basecbs 13032   ↾s cress 13033   +g cplusg 13110   .rcmulr 13111   0gc0g 13289   Grpcgrp 13533   invgcminusg 13534  SubGrpcsubg 13704   1rcur 13922   Ringcrg 13959  SubRingcsubrg 14181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-pre-ltirr 8111  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-ltxr 8186  df-inn 9111  df-2 9169  df-3 9170  df-ndx 13035  df-slot 13036  df-base 13038  df-sets 13039  df-iress 13040  df-plusg 13123  df-mulr 13124  df-0g 13291  df-mgm 13389  df-sgrp 13435  df-mnd 13450  df-grp 13536  df-minusg 13537  df-subg 13707  df-mgp 13884  df-ur 13923  df-ring 13961  df-subrg 14183
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator