ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrgsubg Unicode version

Theorem subrgsubg 14191
Description: A subring is a subgroup. (Contributed by Mario Carneiro, 3-Dec-2014.)
Assertion
Ref Expression
subrgsubg  |-  ( A  e.  (SubRing `  R
)  ->  A  e.  (SubGrp `  R ) )

Proof of Theorem subrgsubg
StepHypRef Expression
1 subrgrcl 14190 . . 3  |-  ( A  e.  (SubRing `  R
)  ->  R  e.  Ring )
2 ringgrp 13964 . . 3  |-  ( R  e.  Ring  ->  R  e. 
Grp )
31, 2syl 14 . 2  |-  ( A  e.  (SubRing `  R
)  ->  R  e.  Grp )
4 eqid 2229 . . 3  |-  ( Base `  R )  =  (
Base `  R )
54subrgss 14186 . 2  |-  ( A  e.  (SubRing `  R
)  ->  A  C_  ( Base `  R ) )
6 eqid 2229 . . . 4  |-  ( Rs  A )  =  ( Rs  A )
76subrgring 14188 . . 3  |-  ( A  e.  (SubRing `  R
)  ->  ( Rs  A
)  e.  Ring )
8 ringgrp 13964 . . 3  |-  ( ( Rs  A )  e.  Ring  -> 
( Rs  A )  e.  Grp )
97, 8syl 14 . 2  |-  ( A  e.  (SubRing `  R
)  ->  ( Rs  A
)  e.  Grp )
104issubg 13710 . 2  |-  ( A  e.  (SubGrp `  R
)  <->  ( R  e. 
Grp  /\  A  C_  ( Base `  R )  /\  ( Rs  A )  e.  Grp ) )
113, 5, 9, 10syl3anbrc 1205 1  |-  ( A  e.  (SubRing `  R
)  ->  A  e.  (SubGrp `  R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2200    C_ wss 3197   ` cfv 5318  (class class class)co 6001   Basecbs 13032   ↾s cress 13033   Grpcgrp 13533  SubGrpcsubg 13704   Ringcrg 13959  SubRingcsubrg 14181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-cnex 8090  ax-resscn 8091  ax-1re 8093  ax-addrcl 8096
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326  df-ov 6004  df-inn 9111  df-2 9169  df-3 9170  df-ndx 13035  df-slot 13036  df-base 13038  df-plusg 13123  df-mulr 13124  df-subg 13707  df-ring 13961  df-subrg 14183
This theorem is referenced by:  subrg0  14192  subrgbas  14194  subrgacl  14196  issubrg2  14205  subrgintm  14207  resrhm  14212  resrhm2b  14213  rhmima  14215  zsssubrg  14549  zringsubgval  14569  zndvds  14613  dvply2g  15440  lgseisenlem4  15752
  Copyright terms: Public domain W3C validator