ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrgsubg Unicode version

Theorem subrgsubg 13859
Description: A subring is a subgroup. (Contributed by Mario Carneiro, 3-Dec-2014.)
Assertion
Ref Expression
subrgsubg  |-  ( A  e.  (SubRing `  R
)  ->  A  e.  (SubGrp `  R ) )

Proof of Theorem subrgsubg
StepHypRef Expression
1 subrgrcl 13858 . . 3  |-  ( A  e.  (SubRing `  R
)  ->  R  e.  Ring )
2 ringgrp 13633 . . 3  |-  ( R  e.  Ring  ->  R  e. 
Grp )
31, 2syl 14 . 2  |-  ( A  e.  (SubRing `  R
)  ->  R  e.  Grp )
4 eqid 2196 . . 3  |-  ( Base `  R )  =  (
Base `  R )
54subrgss 13854 . 2  |-  ( A  e.  (SubRing `  R
)  ->  A  C_  ( Base `  R ) )
6 eqid 2196 . . . 4  |-  ( Rs  A )  =  ( Rs  A )
76subrgring 13856 . . 3  |-  ( A  e.  (SubRing `  R
)  ->  ( Rs  A
)  e.  Ring )
8 ringgrp 13633 . . 3  |-  ( ( Rs  A )  e.  Ring  -> 
( Rs  A )  e.  Grp )
97, 8syl 14 . 2  |-  ( A  e.  (SubRing `  R
)  ->  ( Rs  A
)  e.  Grp )
104issubg 13379 . 2  |-  ( A  e.  (SubGrp `  R
)  <->  ( R  e. 
Grp  /\  A  C_  ( Base `  R )  /\  ( Rs  A )  e.  Grp ) )
113, 5, 9, 10syl3anbrc 1183 1  |-  ( A  e.  (SubRing `  R
)  ->  A  e.  (SubGrp `  R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2167    C_ wss 3157   ` cfv 5259  (class class class)co 5925   Basecbs 12703   ↾s cress 12704   Grpcgrp 13202  SubGrpcsubg 13373   Ringcrg 13628  SubRingcsubrg 13849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-cnex 7987  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-fv 5267  df-ov 5928  df-inn 9008  df-2 9066  df-3 9067  df-ndx 12706  df-slot 12707  df-base 12709  df-plusg 12793  df-mulr 12794  df-subg 13376  df-ring 13630  df-subrg 13851
This theorem is referenced by:  subrg0  13860  subrgbas  13862  subrgacl  13864  issubrg2  13873  subrgintm  13875  resrhm  13880  resrhm2b  13881  rhmima  13883  zsssubrg  14217  zringsubgval  14237  zndvds  14281  dvply2g  15086  lgseisenlem4  15398
  Copyright terms: Public domain W3C validator