ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrgsubg Unicode version

Theorem subrgsubg 13783
Description: A subring is a subgroup. (Contributed by Mario Carneiro, 3-Dec-2014.)
Assertion
Ref Expression
subrgsubg  |-  ( A  e.  (SubRing `  R
)  ->  A  e.  (SubGrp `  R ) )

Proof of Theorem subrgsubg
StepHypRef Expression
1 subrgrcl 13782 . . 3  |-  ( A  e.  (SubRing `  R
)  ->  R  e.  Ring )
2 ringgrp 13557 . . 3  |-  ( R  e.  Ring  ->  R  e. 
Grp )
31, 2syl 14 . 2  |-  ( A  e.  (SubRing `  R
)  ->  R  e.  Grp )
4 eqid 2196 . . 3  |-  ( Base `  R )  =  (
Base `  R )
54subrgss 13778 . 2  |-  ( A  e.  (SubRing `  R
)  ->  A  C_  ( Base `  R ) )
6 eqid 2196 . . . 4  |-  ( Rs  A )  =  ( Rs  A )
76subrgring 13780 . . 3  |-  ( A  e.  (SubRing `  R
)  ->  ( Rs  A
)  e.  Ring )
8 ringgrp 13557 . . 3  |-  ( ( Rs  A )  e.  Ring  -> 
( Rs  A )  e.  Grp )
97, 8syl 14 . 2  |-  ( A  e.  (SubRing `  R
)  ->  ( Rs  A
)  e.  Grp )
104issubg 13303 . 2  |-  ( A  e.  (SubGrp `  R
)  <->  ( R  e. 
Grp  /\  A  C_  ( Base `  R )  /\  ( Rs  A )  e.  Grp ) )
113, 5, 9, 10syl3anbrc 1183 1  |-  ( A  e.  (SubRing `  R
)  ->  A  e.  (SubGrp `  R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2167    C_ wss 3157   ` cfv 5258  (class class class)co 5922   Basecbs 12678   ↾s cress 12679   Grpcgrp 13132  SubGrpcsubg 13297   Ringcrg 13552  SubRingcsubrg 13773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266  df-ov 5925  df-inn 8991  df-2 9049  df-3 9050  df-ndx 12681  df-slot 12682  df-base 12684  df-plusg 12768  df-mulr 12769  df-subg 13300  df-ring 13554  df-subrg 13775
This theorem is referenced by:  subrg0  13784  subrgbas  13786  subrgacl  13788  issubrg2  13797  subrgintm  13799  resrhm  13804  resrhm2b  13805  rhmima  13807  zsssubrg  14141  zringsubgval  14161  zndvds  14205  dvply2g  15002  lgseisenlem4  15314
  Copyright terms: Public domain W3C validator