ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrgsubg Unicode version

Theorem subrgsubg 13723
Description: A subring is a subgroup. (Contributed by Mario Carneiro, 3-Dec-2014.)
Assertion
Ref Expression
subrgsubg  |-  ( A  e.  (SubRing `  R
)  ->  A  e.  (SubGrp `  R ) )

Proof of Theorem subrgsubg
StepHypRef Expression
1 subrgrcl 13722 . . 3  |-  ( A  e.  (SubRing `  R
)  ->  R  e.  Ring )
2 ringgrp 13497 . . 3  |-  ( R  e.  Ring  ->  R  e. 
Grp )
31, 2syl 14 . 2  |-  ( A  e.  (SubRing `  R
)  ->  R  e.  Grp )
4 eqid 2193 . . 3  |-  ( Base `  R )  =  (
Base `  R )
54subrgss 13718 . 2  |-  ( A  e.  (SubRing `  R
)  ->  A  C_  ( Base `  R ) )
6 eqid 2193 . . . 4  |-  ( Rs  A )  =  ( Rs  A )
76subrgring 13720 . . 3  |-  ( A  e.  (SubRing `  R
)  ->  ( Rs  A
)  e.  Ring )
8 ringgrp 13497 . . 3  |-  ( ( Rs  A )  e.  Ring  -> 
( Rs  A )  e.  Grp )
97, 8syl 14 . 2  |-  ( A  e.  (SubRing `  R
)  ->  ( Rs  A
)  e.  Grp )
104issubg 13243 . 2  |-  ( A  e.  (SubGrp `  R
)  <->  ( R  e. 
Grp  /\  A  C_  ( Base `  R )  /\  ( Rs  A )  e.  Grp ) )
113, 5, 9, 10syl3anbrc 1183 1  |-  ( A  e.  (SubRing `  R
)  ->  A  e.  (SubGrp `  R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2164    C_ wss 3153   ` cfv 5254  (class class class)co 5918   Basecbs 12618   ↾s cress 12619   Grpcgrp 13072  SubGrpcsubg 13237   Ringcrg 13492  SubRingcsubrg 13713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262  df-ov 5921  df-inn 8983  df-2 9041  df-3 9042  df-ndx 12621  df-slot 12622  df-base 12624  df-plusg 12708  df-mulr 12709  df-subg 13240  df-ring 13494  df-subrg 13715
This theorem is referenced by:  subrg0  13724  subrgbas  13726  subrgacl  13728  issubrg2  13737  subrgintm  13739  resrhm  13744  resrhm2b  13745  rhmima  13747  zsssubrg  14073  zringsubgval  14093  zndvds  14137  lgseisenlem4  15189
  Copyright terms: Public domain W3C validator