ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrgsubg GIF version

Theorem subrgsubg 14064
Description: A subring is a subgroup. (Contributed by Mario Carneiro, 3-Dec-2014.)
Assertion
Ref Expression
subrgsubg (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅))

Proof of Theorem subrgsubg
StepHypRef Expression
1 subrgrcl 14063 . . 3 (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
2 ringgrp 13838 . . 3 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
31, 2syl 14 . 2 (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Grp)
4 eqid 2206 . . 3 (Base‘𝑅) = (Base‘𝑅)
54subrgss 14059 . 2 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅))
6 eqid 2206 . . . 4 (𝑅s 𝐴) = (𝑅s 𝐴)
76subrgring 14061 . . 3 (𝐴 ∈ (SubRing‘𝑅) → (𝑅s 𝐴) ∈ Ring)
8 ringgrp 13838 . . 3 ((𝑅s 𝐴) ∈ Ring → (𝑅s 𝐴) ∈ Grp)
97, 8syl 14 . 2 (𝐴 ∈ (SubRing‘𝑅) → (𝑅s 𝐴) ∈ Grp)
104issubg 13584 . 2 (𝐴 ∈ (SubGrp‘𝑅) ↔ (𝑅 ∈ Grp ∧ 𝐴 ⊆ (Base‘𝑅) ∧ (𝑅s 𝐴) ∈ Grp))
113, 5, 9, 10syl3anbrc 1184 1 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2177  wss 3170  cfv 5280  (class class class)co 5957  Basecbs 12907  s cress 12908  Grpcgrp 13407  SubGrpcsubg 13578  Ringcrg 13833  SubRingcsubrg 14054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-cnex 8036  ax-resscn 8037  ax-1re 8039  ax-addrcl 8042
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-fv 5288  df-ov 5960  df-inn 9057  df-2 9115  df-3 9116  df-ndx 12910  df-slot 12911  df-base 12913  df-plusg 12997  df-mulr 12998  df-subg 13581  df-ring 13835  df-subrg 14056
This theorem is referenced by:  subrg0  14065  subrgbas  14067  subrgacl  14069  issubrg2  14078  subrgintm  14080  resrhm  14085  resrhm2b  14086  rhmima  14088  zsssubrg  14422  zringsubgval  14442  zndvds  14486  dvply2g  15313  lgseisenlem4  15625
  Copyright terms: Public domain W3C validator