ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrgsubg GIF version

Theorem subrgsubg 13861
Description: A subring is a subgroup. (Contributed by Mario Carneiro, 3-Dec-2014.)
Assertion
Ref Expression
subrgsubg (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅))

Proof of Theorem subrgsubg
StepHypRef Expression
1 subrgrcl 13860 . . 3 (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
2 ringgrp 13635 . . 3 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
31, 2syl 14 . 2 (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Grp)
4 eqid 2196 . . 3 (Base‘𝑅) = (Base‘𝑅)
54subrgss 13856 . 2 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅))
6 eqid 2196 . . . 4 (𝑅s 𝐴) = (𝑅s 𝐴)
76subrgring 13858 . . 3 (𝐴 ∈ (SubRing‘𝑅) → (𝑅s 𝐴) ∈ Ring)
8 ringgrp 13635 . . 3 ((𝑅s 𝐴) ∈ Ring → (𝑅s 𝐴) ∈ Grp)
97, 8syl 14 . 2 (𝐴 ∈ (SubRing‘𝑅) → (𝑅s 𝐴) ∈ Grp)
104issubg 13381 . 2 (𝐴 ∈ (SubGrp‘𝑅) ↔ (𝑅 ∈ Grp ∧ 𝐴 ⊆ (Base‘𝑅) ∧ (𝑅s 𝐴) ∈ Grp))
113, 5, 9, 10syl3anbrc 1183 1 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2167  wss 3157  cfv 5259  (class class class)co 5925  Basecbs 12705  s cress 12706  Grpcgrp 13204  SubGrpcsubg 13375  Ringcrg 13630  SubRingcsubrg 13851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-cnex 7989  ax-resscn 7990  ax-1re 7992  ax-addrcl 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-fv 5267  df-ov 5928  df-inn 9010  df-2 9068  df-3 9069  df-ndx 12708  df-slot 12709  df-base 12711  df-plusg 12795  df-mulr 12796  df-subg 13378  df-ring 13632  df-subrg 13853
This theorem is referenced by:  subrg0  13862  subrgbas  13864  subrgacl  13866  issubrg2  13875  subrgintm  13877  resrhm  13882  resrhm2b  13883  rhmima  13885  zsssubrg  14219  zringsubgval  14239  zndvds  14283  dvply2g  15088  lgseisenlem4  15400
  Copyright terms: Public domain W3C validator