ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resrhm2b Unicode version

Theorem resrhm2b 13831
Description: Restriction of the codomain of a (ring) homomorphism. resghm2b 13418 analog. (Contributed by SN, 7-Feb-2025.)
Hypothesis
Ref Expression
resrhm2b.u  |-  U  =  ( Ts  X )
Assertion
Ref Expression
resrhm2b  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  ( F  e.  ( S RingHom  T )  <->  F  e.  ( S RingHom  U ) ) )

Proof of Theorem resrhm2b
StepHypRef Expression
1 subrgsubg 13809 . . . . . 6  |-  ( X  e.  (SubRing `  T
)  ->  X  e.  (SubGrp `  T ) )
2 resrhm2b.u . . . . . . 7  |-  U  =  ( Ts  X )
32resghm2b 13418 . . . . . 6  |-  ( ( X  e.  (SubGrp `  T )  /\  ran  F 
C_  X )  -> 
( F  e.  ( S  GrpHom  T )  <->  F  e.  ( S  GrpHom  U ) ) )
41, 3sylan 283 . . . . 5  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  ( F  e.  ( S  GrpHom  T )  <->  F  e.  ( S  GrpHom  U ) ) )
5 eqid 2196 . . . . . . . 8  |-  (mulGrp `  T )  =  (mulGrp `  T )
65subrgsubm 13816 . . . . . . 7  |-  ( X  e.  (SubRing `  T
)  ->  X  e.  (SubMnd `  (mulGrp `  T
) ) )
7 eqid 2196 . . . . . . . 8  |-  ( (mulGrp `  T )s  X )  =  ( (mulGrp `  T )s  X
)
87resmhm2b 13147 . . . . . . 7  |-  ( ( X  e.  (SubMnd `  (mulGrp `  T ) )  /\  ran  F  C_  X )  ->  ( F  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  T ) )  <->  F  e.  ( (mulGrp `  S ) MndHom  ( (mulGrp `  T )s  X
) ) ) )
96, 8sylan 283 . . . . . 6  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  ( F  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  T ) )  <->  F  e.  ( (mulGrp `  S ) MndHom  ( (mulGrp `  T )s  X
) ) ) )
10 subrgrcl 13808 . . . . . . . . . 10  |-  ( X  e.  (SubRing `  T
)  ->  T  e.  Ring )
112, 5mgpress 13513 . . . . . . . . . 10  |-  ( ( T  e.  Ring  /\  X  e.  (SubRing `  T )
)  ->  ( (mulGrp `  T )s  X )  =  (mulGrp `  U ) )
1210, 11mpancom 422 . . . . . . . . 9  |-  ( X  e.  (SubRing `  T
)  ->  ( (mulGrp `  T )s  X )  =  (mulGrp `  U ) )
1312adantr 276 . . . . . . . 8  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  (
(mulGrp `  T )s  X
)  =  (mulGrp `  U ) )
1413oveq2d 5939 . . . . . . 7  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  (
(mulGrp `  S ) MndHom  ( (mulGrp `  T )s  X
) )  =  ( (mulGrp `  S ) MndHom  (mulGrp `  U ) ) )
1514eleq2d 2266 . . . . . 6  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  ( F  e.  ( (mulGrp `  S ) MndHom  ( (mulGrp `  T )s  X ) )  <->  F  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  U ) ) ) )
169, 15bitrd 188 . . . . 5  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  ( F  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  T ) )  <->  F  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  U ) ) ) )
174, 16anbi12d 473 . . . 4  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  (
( F  e.  ( S  GrpHom  T )  /\  F  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  T ) ) )  <-> 
( F  e.  ( S  GrpHom  U )  /\  F  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  U ) ) ) ) )
1817anbi2d 464 . . 3  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  (
( S  e.  Ring  /\  ( F  e.  ( S  GrpHom  T )  /\  F  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  T ) ) ) )  <->  ( S  e. 
Ring  /\  ( F  e.  ( S  GrpHom  U )  /\  F  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  U ) ) ) ) ) )
1910adantr 276 . . . . 5  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  T  e.  Ring )
2019biantrud 304 . . . 4  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  ( S  e.  Ring  <->  ( S  e.  Ring  /\  T  e.  Ring ) ) )
2120anbi1d 465 . . 3  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  (
( S  e.  Ring  /\  ( F  e.  ( S  GrpHom  T )  /\  F  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  T ) ) ) )  <->  ( ( S  e.  Ring  /\  T  e. 
Ring )  /\  ( F  e.  ( S  GrpHom  T )  /\  F  e.  ( (mulGrp `  S
) MndHom  (mulGrp `  T )
) ) ) ) )
222subrgring 13806 . . . . . 6  |-  ( X  e.  (SubRing `  T
)  ->  U  e.  Ring )
2322adantr 276 . . . . 5  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  U  e.  Ring )
2423biantrud 304 . . . 4  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  ( S  e.  Ring  <->  ( S  e.  Ring  /\  U  e.  Ring ) ) )
2524anbi1d 465 . . 3  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  (
( S  e.  Ring  /\  ( F  e.  ( S  GrpHom  U )  /\  F  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  U ) ) ) )  <->  ( ( S  e.  Ring  /\  U  e. 
Ring )  /\  ( F  e.  ( S  GrpHom  U )  /\  F  e.  ( (mulGrp `  S
) MndHom  (mulGrp `  U )
) ) ) ) )
2618, 21, 253bitr3d 218 . 2  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  (
( ( S  e. 
Ring  /\  T  e.  Ring )  /\  ( F  e.  ( S  GrpHom  T )  /\  F  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  T ) ) ) )  <->  ( ( S  e.  Ring  /\  U  e. 
Ring )  /\  ( F  e.  ( S  GrpHom  U )  /\  F  e.  ( (mulGrp `  S
) MndHom  (mulGrp `  U )
) ) ) ) )
27 eqid 2196 . . 3  |-  (mulGrp `  S )  =  (mulGrp `  S )
2827, 5isrhm 13740 . 2  |-  ( F  e.  ( S RingHom  T
)  <->  ( ( S  e.  Ring  /\  T  e. 
Ring )  /\  ( F  e.  ( S  GrpHom  T )  /\  F  e.  ( (mulGrp `  S
) MndHom  (mulGrp `  T )
) ) ) )
29 eqid 2196 . . 3  |-  (mulGrp `  U )  =  (mulGrp `  U )
3027, 29isrhm 13740 . 2  |-  ( F  e.  ( S RingHom  U
)  <->  ( ( S  e.  Ring  /\  U  e. 
Ring )  /\  ( F  e.  ( S  GrpHom  U )  /\  F  e.  ( (mulGrp `  S
) MndHom  (mulGrp `  U )
) ) ) )
3126, 28, 303bitr4g 223 1  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  ( F  e.  ( S RingHom  T )  <->  F  e.  ( S RingHom  U ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167    C_ wss 3157   ran crn 4665   ` cfv 5259  (class class class)co 5923   ↾s cress 12690   MndHom cmhm 13115  SubMndcsubmnd 13116  SubGrpcsubg 13323    GrpHom cghm 13396  mulGrpcmgp 13502   Ringcrg 13578   RingHom crh 13732  SubRingcsubrg 13799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7973  ax-resscn 7974  ax-1cn 7975  ax-1re 7976  ax-icn 7977  ax-addcl 7978  ax-addrcl 7979  ax-mulcl 7980  ax-addcom 7982  ax-addass 7984  ax-i2m1 7987  ax-0lt1 7988  ax-0id 7990  ax-rnegex 7991  ax-pre-ltirr 7994  ax-pre-lttrn 7996  ax-pre-ltadd 7998
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-1st 6200  df-2nd 6201  df-map 6711  df-pnf 8066  df-mnf 8067  df-ltxr 8069  df-inn 8994  df-2 9052  df-3 9053  df-ndx 12692  df-slot 12693  df-base 12695  df-sets 12696  df-iress 12697  df-plusg 12779  df-mulr 12780  df-0g 12946  df-mgm 13025  df-sgrp 13071  df-mnd 13084  df-mhm 13117  df-submnd 13118  df-grp 13161  df-minusg 13162  df-subg 13326  df-ghm 13397  df-mgp 13503  df-ur 13542  df-ring 13580  df-rhm 13734  df-subrg 13801
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator