ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resrhm2b Unicode version

Theorem resrhm2b 14055
Description: Restriction of the codomain of a (ring) homomorphism. resghm2b 13642 analog. (Contributed by SN, 7-Feb-2025.)
Hypothesis
Ref Expression
resrhm2b.u  |-  U  =  ( Ts  X )
Assertion
Ref Expression
resrhm2b  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  ( F  e.  ( S RingHom  T )  <->  F  e.  ( S RingHom  U ) ) )

Proof of Theorem resrhm2b
StepHypRef Expression
1 subrgsubg 14033 . . . . . 6  |-  ( X  e.  (SubRing `  T
)  ->  X  e.  (SubGrp `  T ) )
2 resrhm2b.u . . . . . . 7  |-  U  =  ( Ts  X )
32resghm2b 13642 . . . . . 6  |-  ( ( X  e.  (SubGrp `  T )  /\  ran  F 
C_  X )  -> 
( F  e.  ( S  GrpHom  T )  <->  F  e.  ( S  GrpHom  U ) ) )
41, 3sylan 283 . . . . 5  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  ( F  e.  ( S  GrpHom  T )  <->  F  e.  ( S  GrpHom  U ) ) )
5 eqid 2206 . . . . . . . 8  |-  (mulGrp `  T )  =  (mulGrp `  T )
65subrgsubm 14040 . . . . . . 7  |-  ( X  e.  (SubRing `  T
)  ->  X  e.  (SubMnd `  (mulGrp `  T
) ) )
7 eqid 2206 . . . . . . . 8  |-  ( (mulGrp `  T )s  X )  =  ( (mulGrp `  T )s  X
)
87resmhm2b 13365 . . . . . . 7  |-  ( ( X  e.  (SubMnd `  (mulGrp `  T ) )  /\  ran  F  C_  X )  ->  ( F  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  T ) )  <->  F  e.  ( (mulGrp `  S ) MndHom  ( (mulGrp `  T )s  X
) ) ) )
96, 8sylan 283 . . . . . 6  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  ( F  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  T ) )  <->  F  e.  ( (mulGrp `  S ) MndHom  ( (mulGrp `  T )s  X
) ) ) )
10 subrgrcl 14032 . . . . . . . . . 10  |-  ( X  e.  (SubRing `  T
)  ->  T  e.  Ring )
112, 5mgpress 13737 . . . . . . . . . 10  |-  ( ( T  e.  Ring  /\  X  e.  (SubRing `  T )
)  ->  ( (mulGrp `  T )s  X )  =  (mulGrp `  U ) )
1210, 11mpancom 422 . . . . . . . . 9  |-  ( X  e.  (SubRing `  T
)  ->  ( (mulGrp `  T )s  X )  =  (mulGrp `  U ) )
1312adantr 276 . . . . . . . 8  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  (
(mulGrp `  T )s  X
)  =  (mulGrp `  U ) )
1413oveq2d 5967 . . . . . . 7  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  (
(mulGrp `  S ) MndHom  ( (mulGrp `  T )s  X
) )  =  ( (mulGrp `  S ) MndHom  (mulGrp `  U ) ) )
1514eleq2d 2276 . . . . . 6  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  ( F  e.  ( (mulGrp `  S ) MndHom  ( (mulGrp `  T )s  X ) )  <->  F  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  U ) ) ) )
169, 15bitrd 188 . . . . 5  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  ( F  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  T ) )  <->  F  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  U ) ) ) )
174, 16anbi12d 473 . . . 4  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  (
( F  e.  ( S  GrpHom  T )  /\  F  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  T ) ) )  <-> 
( F  e.  ( S  GrpHom  U )  /\  F  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  U ) ) ) ) )
1817anbi2d 464 . . 3  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  (
( S  e.  Ring  /\  ( F  e.  ( S  GrpHom  T )  /\  F  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  T ) ) ) )  <->  ( S  e. 
Ring  /\  ( F  e.  ( S  GrpHom  U )  /\  F  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  U ) ) ) ) ) )
1910adantr 276 . . . . 5  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  T  e.  Ring )
2019biantrud 304 . . . 4  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  ( S  e.  Ring  <->  ( S  e.  Ring  /\  T  e.  Ring ) ) )
2120anbi1d 465 . . 3  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  (
( S  e.  Ring  /\  ( F  e.  ( S  GrpHom  T )  /\  F  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  T ) ) ) )  <->  ( ( S  e.  Ring  /\  T  e. 
Ring )  /\  ( F  e.  ( S  GrpHom  T )  /\  F  e.  ( (mulGrp `  S
) MndHom  (mulGrp `  T )
) ) ) ) )
222subrgring 14030 . . . . . 6  |-  ( X  e.  (SubRing `  T
)  ->  U  e.  Ring )
2322adantr 276 . . . . 5  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  U  e.  Ring )
2423biantrud 304 . . . 4  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  ( S  e.  Ring  <->  ( S  e.  Ring  /\  U  e.  Ring ) ) )
2524anbi1d 465 . . 3  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  (
( S  e.  Ring  /\  ( F  e.  ( S  GrpHom  U )  /\  F  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  U ) ) ) )  <->  ( ( S  e.  Ring  /\  U  e. 
Ring )  /\  ( F  e.  ( S  GrpHom  U )  /\  F  e.  ( (mulGrp `  S
) MndHom  (mulGrp `  U )
) ) ) ) )
2618, 21, 253bitr3d 218 . 2  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  (
( ( S  e. 
Ring  /\  T  e.  Ring )  /\  ( F  e.  ( S  GrpHom  T )  /\  F  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  T ) ) ) )  <->  ( ( S  e.  Ring  /\  U  e. 
Ring )  /\  ( F  e.  ( S  GrpHom  U )  /\  F  e.  ( (mulGrp `  S
) MndHom  (mulGrp `  U )
) ) ) ) )
27 eqid 2206 . . 3  |-  (mulGrp `  S )  =  (mulGrp `  S )
2827, 5isrhm 13964 . 2  |-  ( F  e.  ( S RingHom  T
)  <->  ( ( S  e.  Ring  /\  T  e. 
Ring )  /\  ( F  e.  ( S  GrpHom  T )  /\  F  e.  ( (mulGrp `  S
) MndHom  (mulGrp `  T )
) ) ) )
29 eqid 2206 . . 3  |-  (mulGrp `  U )  =  (mulGrp `  U )
3027, 29isrhm 13964 . 2  |-  ( F  e.  ( S RingHom  U
)  <->  ( ( S  e.  Ring  /\  U  e. 
Ring )  /\  ( F  e.  ( S  GrpHom  U )  /\  F  e.  ( (mulGrp `  S
) MndHom  (mulGrp `  U )
) ) ) )
3126, 28, 303bitr4g 223 1  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  ( F  e.  ( S RingHom  T )  <->  F  e.  ( S RingHom  U ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2177    C_ wss 3167   ran crn 4680   ` cfv 5276  (class class class)co 5951   ↾s cress 12877   MndHom cmhm 13333  SubMndcsubmnd 13334  SubGrpcsubg 13547    GrpHom cghm 13620  mulGrpcmgp 13726   Ringcrg 13802   RingHom crh 13956  SubRingcsubrg 14023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-addcom 8032  ax-addass 8034  ax-i2m1 8037  ax-0lt1 8038  ax-0id 8040  ax-rnegex 8041  ax-pre-ltirr 8044  ax-pre-lttrn 8046  ax-pre-ltadd 8048
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-map 6744  df-pnf 8116  df-mnf 8117  df-ltxr 8119  df-inn 9044  df-2 9102  df-3 9103  df-ndx 12879  df-slot 12880  df-base 12882  df-sets 12883  df-iress 12884  df-plusg 12966  df-mulr 12967  df-0g 13134  df-mgm 13232  df-sgrp 13278  df-mnd 13293  df-mhm 13335  df-submnd 13336  df-grp 13379  df-minusg 13380  df-subg 13550  df-ghm 13621  df-mgp 13727  df-ur 13766  df-ring 13804  df-rhm 13958  df-subrg 14025
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator