ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resrhm2b Unicode version

Theorem resrhm2b 14198
Description: Restriction of the codomain of a (ring) homomorphism. resghm2b 13785 analog. (Contributed by SN, 7-Feb-2025.)
Hypothesis
Ref Expression
resrhm2b.u  |-  U  =  ( Ts  X )
Assertion
Ref Expression
resrhm2b  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  ( F  e.  ( S RingHom  T )  <->  F  e.  ( S RingHom  U ) ) )

Proof of Theorem resrhm2b
StepHypRef Expression
1 subrgsubg 14176 . . . . . 6  |-  ( X  e.  (SubRing `  T
)  ->  X  e.  (SubGrp `  T ) )
2 resrhm2b.u . . . . . . 7  |-  U  =  ( Ts  X )
32resghm2b 13785 . . . . . 6  |-  ( ( X  e.  (SubGrp `  T )  /\  ran  F 
C_  X )  -> 
( F  e.  ( S  GrpHom  T )  <->  F  e.  ( S  GrpHom  U ) ) )
41, 3sylan 283 . . . . 5  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  ( F  e.  ( S  GrpHom  T )  <->  F  e.  ( S  GrpHom  U ) ) )
5 eqid 2229 . . . . . . . 8  |-  (mulGrp `  T )  =  (mulGrp `  T )
65subrgsubm 14183 . . . . . . 7  |-  ( X  e.  (SubRing `  T
)  ->  X  e.  (SubMnd `  (mulGrp `  T
) ) )
7 eqid 2229 . . . . . . . 8  |-  ( (mulGrp `  T )s  X )  =  ( (mulGrp `  T )s  X
)
87resmhm2b 13508 . . . . . . 7  |-  ( ( X  e.  (SubMnd `  (mulGrp `  T ) )  /\  ran  F  C_  X )  ->  ( F  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  T ) )  <->  F  e.  ( (mulGrp `  S ) MndHom  ( (mulGrp `  T )s  X
) ) ) )
96, 8sylan 283 . . . . . 6  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  ( F  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  T ) )  <->  F  e.  ( (mulGrp `  S ) MndHom  ( (mulGrp `  T )s  X
) ) ) )
10 subrgrcl 14175 . . . . . . . . . 10  |-  ( X  e.  (SubRing `  T
)  ->  T  e.  Ring )
112, 5mgpress 13880 . . . . . . . . . 10  |-  ( ( T  e.  Ring  /\  X  e.  (SubRing `  T )
)  ->  ( (mulGrp `  T )s  X )  =  (mulGrp `  U ) )
1210, 11mpancom 422 . . . . . . . . 9  |-  ( X  e.  (SubRing `  T
)  ->  ( (mulGrp `  T )s  X )  =  (mulGrp `  U ) )
1312adantr 276 . . . . . . . 8  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  (
(mulGrp `  T )s  X
)  =  (mulGrp `  U ) )
1413oveq2d 6010 . . . . . . 7  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  (
(mulGrp `  S ) MndHom  ( (mulGrp `  T )s  X
) )  =  ( (mulGrp `  S ) MndHom  (mulGrp `  U ) ) )
1514eleq2d 2299 . . . . . 6  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  ( F  e.  ( (mulGrp `  S ) MndHom  ( (mulGrp `  T )s  X ) )  <->  F  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  U ) ) ) )
169, 15bitrd 188 . . . . 5  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  ( F  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  T ) )  <->  F  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  U ) ) ) )
174, 16anbi12d 473 . . . 4  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  (
( F  e.  ( S  GrpHom  T )  /\  F  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  T ) ) )  <-> 
( F  e.  ( S  GrpHom  U )  /\  F  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  U ) ) ) ) )
1817anbi2d 464 . . 3  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  (
( S  e.  Ring  /\  ( F  e.  ( S  GrpHom  T )  /\  F  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  T ) ) ) )  <->  ( S  e. 
Ring  /\  ( F  e.  ( S  GrpHom  U )  /\  F  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  U ) ) ) ) ) )
1910adantr 276 . . . . 5  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  T  e.  Ring )
2019biantrud 304 . . . 4  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  ( S  e.  Ring  <->  ( S  e.  Ring  /\  T  e.  Ring ) ) )
2120anbi1d 465 . . 3  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  (
( S  e.  Ring  /\  ( F  e.  ( S  GrpHom  T )  /\  F  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  T ) ) ) )  <->  ( ( S  e.  Ring  /\  T  e. 
Ring )  /\  ( F  e.  ( S  GrpHom  T )  /\  F  e.  ( (mulGrp `  S
) MndHom  (mulGrp `  T )
) ) ) ) )
222subrgring 14173 . . . . . 6  |-  ( X  e.  (SubRing `  T
)  ->  U  e.  Ring )
2322adantr 276 . . . . 5  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  U  e.  Ring )
2423biantrud 304 . . . 4  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  ( S  e.  Ring  <->  ( S  e.  Ring  /\  U  e.  Ring ) ) )
2524anbi1d 465 . . 3  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  (
( S  e.  Ring  /\  ( F  e.  ( S  GrpHom  U )  /\  F  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  U ) ) ) )  <->  ( ( S  e.  Ring  /\  U  e. 
Ring )  /\  ( F  e.  ( S  GrpHom  U )  /\  F  e.  ( (mulGrp `  S
) MndHom  (mulGrp `  U )
) ) ) ) )
2618, 21, 253bitr3d 218 . 2  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  (
( ( S  e. 
Ring  /\  T  e.  Ring )  /\  ( F  e.  ( S  GrpHom  T )  /\  F  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  T ) ) ) )  <->  ( ( S  e.  Ring  /\  U  e. 
Ring )  /\  ( F  e.  ( S  GrpHom  U )  /\  F  e.  ( (mulGrp `  S
) MndHom  (mulGrp `  U )
) ) ) ) )
27 eqid 2229 . . 3  |-  (mulGrp `  S )  =  (mulGrp `  S )
2827, 5isrhm 14107 . 2  |-  ( F  e.  ( S RingHom  T
)  <->  ( ( S  e.  Ring  /\  T  e. 
Ring )  /\  ( F  e.  ( S  GrpHom  T )  /\  F  e.  ( (mulGrp `  S
) MndHom  (mulGrp `  T )
) ) ) )
29 eqid 2229 . . 3  |-  (mulGrp `  U )  =  (mulGrp `  U )
3027, 29isrhm 14107 . 2  |-  ( F  e.  ( S RingHom  U
)  <->  ( ( S  e.  Ring  /\  U  e. 
Ring )  /\  ( F  e.  ( S  GrpHom  U )  /\  F  e.  ( (mulGrp `  S
) MndHom  (mulGrp `  U )
) ) ) )
3126, 28, 303bitr4g 223 1  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  ( F  e.  ( S RingHom  T )  <->  F  e.  ( S RingHom  U ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200    C_ wss 3197   ran crn 4717   ` cfv 5314  (class class class)co 5994   ↾s cress 13019   MndHom cmhm 13476  SubMndcsubmnd 13477  SubGrpcsubg 13690    GrpHom cghm 13763  mulGrpcmgp 13869   Ringcrg 13945   RingHom crh 14099  SubRingcsubrg 14166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-addcom 8087  ax-addass 8089  ax-i2m1 8092  ax-0lt1 8093  ax-0id 8095  ax-rnegex 8096  ax-pre-ltirr 8099  ax-pre-lttrn 8101  ax-pre-ltadd 8103
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-map 6787  df-pnf 8171  df-mnf 8172  df-ltxr 8174  df-inn 9099  df-2 9157  df-3 9158  df-ndx 13021  df-slot 13022  df-base 13024  df-sets 13025  df-iress 13026  df-plusg 13109  df-mulr 13110  df-0g 13277  df-mgm 13375  df-sgrp 13421  df-mnd 13436  df-mhm 13478  df-submnd 13479  df-grp 13522  df-minusg 13523  df-subg 13693  df-ghm 13764  df-mgp 13870  df-ur 13909  df-ring 13947  df-rhm 14101  df-subrg 14168
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator