ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resrhm2b Unicode version

Theorem resrhm2b 13805
Description: Restriction of the codomain of a (ring) homomorphism. resghm2b 13392 analog. (Contributed by SN, 7-Feb-2025.)
Hypothesis
Ref Expression
resrhm2b.u  |-  U  =  ( Ts  X )
Assertion
Ref Expression
resrhm2b  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  ( F  e.  ( S RingHom  T )  <->  F  e.  ( S RingHom  U ) ) )

Proof of Theorem resrhm2b
StepHypRef Expression
1 subrgsubg 13783 . . . . . 6  |-  ( X  e.  (SubRing `  T
)  ->  X  e.  (SubGrp `  T ) )
2 resrhm2b.u . . . . . . 7  |-  U  =  ( Ts  X )
32resghm2b 13392 . . . . . 6  |-  ( ( X  e.  (SubGrp `  T )  /\  ran  F 
C_  X )  -> 
( F  e.  ( S  GrpHom  T )  <->  F  e.  ( S  GrpHom  U ) ) )
41, 3sylan 283 . . . . 5  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  ( F  e.  ( S  GrpHom  T )  <->  F  e.  ( S  GrpHom  U ) ) )
5 eqid 2196 . . . . . . . 8  |-  (mulGrp `  T )  =  (mulGrp `  T )
65subrgsubm 13790 . . . . . . 7  |-  ( X  e.  (SubRing `  T
)  ->  X  e.  (SubMnd `  (mulGrp `  T
) ) )
7 eqid 2196 . . . . . . . 8  |-  ( (mulGrp `  T )s  X )  =  ( (mulGrp `  T )s  X
)
87resmhm2b 13121 . . . . . . 7  |-  ( ( X  e.  (SubMnd `  (mulGrp `  T ) )  /\  ran  F  C_  X )  ->  ( F  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  T ) )  <->  F  e.  ( (mulGrp `  S ) MndHom  ( (mulGrp `  T )s  X
) ) ) )
96, 8sylan 283 . . . . . 6  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  ( F  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  T ) )  <->  F  e.  ( (mulGrp `  S ) MndHom  ( (mulGrp `  T )s  X
) ) ) )
10 subrgrcl 13782 . . . . . . . . . 10  |-  ( X  e.  (SubRing `  T
)  ->  T  e.  Ring )
112, 5mgpress 13487 . . . . . . . . . 10  |-  ( ( T  e.  Ring  /\  X  e.  (SubRing `  T )
)  ->  ( (mulGrp `  T )s  X )  =  (mulGrp `  U ) )
1210, 11mpancom 422 . . . . . . . . 9  |-  ( X  e.  (SubRing `  T
)  ->  ( (mulGrp `  T )s  X )  =  (mulGrp `  U ) )
1312adantr 276 . . . . . . . 8  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  (
(mulGrp `  T )s  X
)  =  (mulGrp `  U ) )
1413oveq2d 5938 . . . . . . 7  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  (
(mulGrp `  S ) MndHom  ( (mulGrp `  T )s  X
) )  =  ( (mulGrp `  S ) MndHom  (mulGrp `  U ) ) )
1514eleq2d 2266 . . . . . 6  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  ( F  e.  ( (mulGrp `  S ) MndHom  ( (mulGrp `  T )s  X ) )  <->  F  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  U ) ) ) )
169, 15bitrd 188 . . . . 5  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  ( F  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  T ) )  <->  F  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  U ) ) ) )
174, 16anbi12d 473 . . . 4  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  (
( F  e.  ( S  GrpHom  T )  /\  F  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  T ) ) )  <-> 
( F  e.  ( S  GrpHom  U )  /\  F  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  U ) ) ) ) )
1817anbi2d 464 . . 3  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  (
( S  e.  Ring  /\  ( F  e.  ( S  GrpHom  T )  /\  F  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  T ) ) ) )  <->  ( S  e. 
Ring  /\  ( F  e.  ( S  GrpHom  U )  /\  F  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  U ) ) ) ) ) )
1910adantr 276 . . . . 5  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  T  e.  Ring )
2019biantrud 304 . . . 4  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  ( S  e.  Ring  <->  ( S  e.  Ring  /\  T  e.  Ring ) ) )
2120anbi1d 465 . . 3  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  (
( S  e.  Ring  /\  ( F  e.  ( S  GrpHom  T )  /\  F  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  T ) ) ) )  <->  ( ( S  e.  Ring  /\  T  e. 
Ring )  /\  ( F  e.  ( S  GrpHom  T )  /\  F  e.  ( (mulGrp `  S
) MndHom  (mulGrp `  T )
) ) ) ) )
222subrgring 13780 . . . . . 6  |-  ( X  e.  (SubRing `  T
)  ->  U  e.  Ring )
2322adantr 276 . . . . 5  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  U  e.  Ring )
2423biantrud 304 . . . 4  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  ( S  e.  Ring  <->  ( S  e.  Ring  /\  U  e.  Ring ) ) )
2524anbi1d 465 . . 3  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  (
( S  e.  Ring  /\  ( F  e.  ( S  GrpHom  U )  /\  F  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  U ) ) ) )  <->  ( ( S  e.  Ring  /\  U  e. 
Ring )  /\  ( F  e.  ( S  GrpHom  U )  /\  F  e.  ( (mulGrp `  S
) MndHom  (mulGrp `  U )
) ) ) ) )
2618, 21, 253bitr3d 218 . 2  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  (
( ( S  e. 
Ring  /\  T  e.  Ring )  /\  ( F  e.  ( S  GrpHom  T )  /\  F  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  T ) ) ) )  <->  ( ( S  e.  Ring  /\  U  e. 
Ring )  /\  ( F  e.  ( S  GrpHom  U )  /\  F  e.  ( (mulGrp `  S
) MndHom  (mulGrp `  U )
) ) ) ) )
27 eqid 2196 . . 3  |-  (mulGrp `  S )  =  (mulGrp `  S )
2827, 5isrhm 13714 . 2  |-  ( F  e.  ( S RingHom  T
)  <->  ( ( S  e.  Ring  /\  T  e. 
Ring )  /\  ( F  e.  ( S  GrpHom  T )  /\  F  e.  ( (mulGrp `  S
) MndHom  (mulGrp `  T )
) ) ) )
29 eqid 2196 . . 3  |-  (mulGrp `  U )  =  (mulGrp `  U )
3027, 29isrhm 13714 . 2  |-  ( F  e.  ( S RingHom  U
)  <->  ( ( S  e.  Ring  /\  U  e. 
Ring )  /\  ( F  e.  ( S  GrpHom  U )  /\  F  e.  ( (mulGrp `  S
) MndHom  (mulGrp `  U )
) ) ) )
3126, 28, 303bitr4g 223 1  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  ( F  e.  ( S RingHom  T )  <->  F  e.  ( S RingHom  U ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167    C_ wss 3157   ran crn 4664   ` cfv 5258  (class class class)co 5922   ↾s cress 12679   MndHom cmhm 13089  SubMndcsubmnd 13090  SubGrpcsubg 13297    GrpHom cghm 13370  mulGrpcmgp 13476   Ringcrg 13552   RingHom crh 13706  SubRingcsubrg 13773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-map 6709  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-3 9050  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-iress 12686  df-plusg 12768  df-mulr 12769  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-mhm 13091  df-submnd 13092  df-grp 13135  df-minusg 13136  df-subg 13300  df-ghm 13371  df-mgp 13477  df-ur 13516  df-ring 13554  df-rhm 13708  df-subrg 13775
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator