Proof of Theorem resrhm2b
| Step | Hyp | Ref
| Expression |
| 1 | | subrgsubg 13783 |
. . . . . 6
 SubRing 
SubGrp    |
| 2 | | resrhm2b.u |
. . . . . . 7

↾s   |
| 3 | 2 | resghm2b 13392 |
. . . . . 6
  SubGrp     

    |
| 4 | 1, 3 | sylan 283 |
. . . . 5
  SubRing 
 
 

    |
| 5 | | eqid 2196 |
. . . . . . . 8
mulGrp  mulGrp   |
| 6 | 5 | subrgsubm 13790 |
. . . . . . 7
 SubRing 
SubMnd mulGrp     |
| 7 | | eqid 2196 |
. . . . . . . 8
 mulGrp 
↾s   mulGrp  ↾s   |
| 8 | 7 | resmhm2b 13121 |
. . . . . . 7
  SubMnd mulGrp    
 mulGrp  MndHom mulGrp  
 mulGrp  MndHom  mulGrp  ↾s      |
| 9 | 6, 8 | sylan 283 |
. . . . . 6
  SubRing 
 
 mulGrp  MndHom mulGrp  
 mulGrp  MndHom  mulGrp  ↾s      |
| 10 | | subrgrcl 13782 |
. . . . . . . . . 10
 SubRing 
  |
| 11 | 2, 5 | mgpress 13487 |
. . . . . . . . . 10
  SubRing  
 mulGrp 
↾s  mulGrp    |
| 12 | 10, 11 | mpancom 422 |
. . . . . . . . 9
 SubRing 
 mulGrp 
↾s  mulGrp    |
| 13 | 12 | adantr 276 |
. . . . . . . 8
  SubRing 
  mulGrp  ↾s  mulGrp    |
| 14 | 13 | oveq2d 5938 |
. . . . . . 7
  SubRing 
  mulGrp  MndHom  mulGrp  ↾s    mulGrp  MndHom mulGrp     |
| 15 | 14 | eleq2d 2266 |
. . . . . 6
  SubRing 
 
 mulGrp  MndHom  mulGrp 
↾s  
 mulGrp  MndHom mulGrp      |
| 16 | 9, 15 | bitrd 188 |
. . . . 5
  SubRing 
 
 mulGrp  MndHom mulGrp  
 mulGrp  MndHom mulGrp      |
| 17 | 4, 16 | anbi12d 473 |
. . . 4
  SubRing 
    
 mulGrp  MndHom mulGrp      
 mulGrp  MndHom mulGrp       |
| 18 | 17 | anbi2d 464 |
. . 3
  SubRing 
     
 mulGrp  MndHom mulGrp          mulGrp  MndHom mulGrp        |
| 19 | 10 | adantr 276 |
. . . . 5
  SubRing 
   |
| 20 | 19 | biantrud 304 |
. . . 4
  SubRing 
 

    |
| 21 | 20 | anbi1d 465 |
. . 3
  SubRing 
     
 mulGrp  MndHom mulGrp      
 
   mulGrp  MndHom mulGrp        |
| 22 | 2 | subrgring 13780 |
. . . . . 6
 SubRing 
  |
| 23 | 22 | adantr 276 |
. . . . 5
  SubRing 
   |
| 24 | 23 | biantrud 304 |
. . . 4
  SubRing 
 

    |
| 25 | 24 | anbi1d 465 |
. . 3
  SubRing 
     
 mulGrp  MndHom mulGrp      
 
   mulGrp  MndHom mulGrp        |
| 26 | 18, 21, 25 | 3bitr3d 218 |
. 2
  SubRing 
         mulGrp  MndHom mulGrp      
 
   mulGrp  MndHom mulGrp        |
| 27 | | eqid 2196 |
. . 3
mulGrp  mulGrp   |
| 28 | 27, 5 | isrhm 13714 |
. 2
  RingHom   
 
   mulGrp  MndHom mulGrp       |
| 29 | | eqid 2196 |
. . 3
mulGrp  mulGrp   |
| 30 | 27, 29 | isrhm 13714 |
. 2
  RingHom   
 
   mulGrp  MndHom mulGrp       |
| 31 | 26, 28, 30 | 3bitr4g 223 |
1
  SubRing 
 
 RingHom 
 RingHom     |