ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resrhm2b Unicode version

Theorem resrhm2b 14221
Description: Restriction of the codomain of a (ring) homomorphism. resghm2b 13807 analog. (Contributed by SN, 7-Feb-2025.)
Hypothesis
Ref Expression
resrhm2b.u  |-  U  =  ( Ts  X )
Assertion
Ref Expression
resrhm2b  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  ( F  e.  ( S RingHom  T )  <->  F  e.  ( S RingHom  U ) ) )

Proof of Theorem resrhm2b
StepHypRef Expression
1 subrgsubg 14199 . . . . . 6  |-  ( X  e.  (SubRing `  T
)  ->  X  e.  (SubGrp `  T ) )
2 resrhm2b.u . . . . . . 7  |-  U  =  ( Ts  X )
32resghm2b 13807 . . . . . 6  |-  ( ( X  e.  (SubGrp `  T )  /\  ran  F 
C_  X )  -> 
( F  e.  ( S  GrpHom  T )  <->  F  e.  ( S  GrpHom  U ) ) )
41, 3sylan 283 . . . . 5  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  ( F  e.  ( S  GrpHom  T )  <->  F  e.  ( S  GrpHom  U ) ) )
5 eqid 2229 . . . . . . . 8  |-  (mulGrp `  T )  =  (mulGrp `  T )
65subrgsubm 14206 . . . . . . 7  |-  ( X  e.  (SubRing `  T
)  ->  X  e.  (SubMnd `  (mulGrp `  T
) ) )
7 eqid 2229 . . . . . . . 8  |-  ( (mulGrp `  T )s  X )  =  ( (mulGrp `  T )s  X
)
87resmhm2b 13530 . . . . . . 7  |-  ( ( X  e.  (SubMnd `  (mulGrp `  T ) )  /\  ran  F  C_  X )  ->  ( F  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  T ) )  <->  F  e.  ( (mulGrp `  S ) MndHom  ( (mulGrp `  T )s  X
) ) ) )
96, 8sylan 283 . . . . . 6  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  ( F  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  T ) )  <->  F  e.  ( (mulGrp `  S ) MndHom  ( (mulGrp `  T )s  X
) ) ) )
10 subrgrcl 14198 . . . . . . . . . 10  |-  ( X  e.  (SubRing `  T
)  ->  T  e.  Ring )
112, 5mgpress 13902 . . . . . . . . . 10  |-  ( ( T  e.  Ring  /\  X  e.  (SubRing `  T )
)  ->  ( (mulGrp `  T )s  X )  =  (mulGrp `  U ) )
1210, 11mpancom 422 . . . . . . . . 9  |-  ( X  e.  (SubRing `  T
)  ->  ( (mulGrp `  T )s  X )  =  (mulGrp `  U ) )
1312adantr 276 . . . . . . . 8  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  (
(mulGrp `  T )s  X
)  =  (mulGrp `  U ) )
1413oveq2d 6023 . . . . . . 7  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  (
(mulGrp `  S ) MndHom  ( (mulGrp `  T )s  X
) )  =  ( (mulGrp `  S ) MndHom  (mulGrp `  U ) ) )
1514eleq2d 2299 . . . . . 6  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  ( F  e.  ( (mulGrp `  S ) MndHom  ( (mulGrp `  T )s  X ) )  <->  F  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  U ) ) ) )
169, 15bitrd 188 . . . . 5  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  ( F  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  T ) )  <->  F  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  U ) ) ) )
174, 16anbi12d 473 . . . 4  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  (
( F  e.  ( S  GrpHom  T )  /\  F  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  T ) ) )  <-> 
( F  e.  ( S  GrpHom  U )  /\  F  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  U ) ) ) ) )
1817anbi2d 464 . . 3  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  (
( S  e.  Ring  /\  ( F  e.  ( S  GrpHom  T )  /\  F  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  T ) ) ) )  <->  ( S  e. 
Ring  /\  ( F  e.  ( S  GrpHom  U )  /\  F  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  U ) ) ) ) ) )
1910adantr 276 . . . . 5  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  T  e.  Ring )
2019biantrud 304 . . . 4  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  ( S  e.  Ring  <->  ( S  e.  Ring  /\  T  e.  Ring ) ) )
2120anbi1d 465 . . 3  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  (
( S  e.  Ring  /\  ( F  e.  ( S  GrpHom  T )  /\  F  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  T ) ) ) )  <->  ( ( S  e.  Ring  /\  T  e. 
Ring )  /\  ( F  e.  ( S  GrpHom  T )  /\  F  e.  ( (mulGrp `  S
) MndHom  (mulGrp `  T )
) ) ) ) )
222subrgring 14196 . . . . . 6  |-  ( X  e.  (SubRing `  T
)  ->  U  e.  Ring )
2322adantr 276 . . . . 5  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  U  e.  Ring )
2423biantrud 304 . . . 4  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  ( S  e.  Ring  <->  ( S  e.  Ring  /\  U  e.  Ring ) ) )
2524anbi1d 465 . . 3  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  (
( S  e.  Ring  /\  ( F  e.  ( S  GrpHom  U )  /\  F  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  U ) ) ) )  <->  ( ( S  e.  Ring  /\  U  e. 
Ring )  /\  ( F  e.  ( S  GrpHom  U )  /\  F  e.  ( (mulGrp `  S
) MndHom  (mulGrp `  U )
) ) ) ) )
2618, 21, 253bitr3d 218 . 2  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  (
( ( S  e. 
Ring  /\  T  e.  Ring )  /\  ( F  e.  ( S  GrpHom  T )  /\  F  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  T ) ) ) )  <->  ( ( S  e.  Ring  /\  U  e. 
Ring )  /\  ( F  e.  ( S  GrpHom  U )  /\  F  e.  ( (mulGrp `  S
) MndHom  (mulGrp `  U )
) ) ) ) )
27 eqid 2229 . . 3  |-  (mulGrp `  S )  =  (mulGrp `  S )
2827, 5isrhm 14130 . 2  |-  ( F  e.  ( S RingHom  T
)  <->  ( ( S  e.  Ring  /\  T  e. 
Ring )  /\  ( F  e.  ( S  GrpHom  T )  /\  F  e.  ( (mulGrp `  S
) MndHom  (mulGrp `  T )
) ) ) )
29 eqid 2229 . . 3  |-  (mulGrp `  U )  =  (mulGrp `  U )
3027, 29isrhm 14130 . 2  |-  ( F  e.  ( S RingHom  U
)  <->  ( ( S  e.  Ring  /\  U  e. 
Ring )  /\  ( F  e.  ( S  GrpHom  U )  /\  F  e.  ( (mulGrp `  S
) MndHom  (mulGrp `  U )
) ) ) )
3126, 28, 303bitr4g 223 1  |-  ( ( X  e.  (SubRing `  T
)  /\  ran  F  C_  X )  ->  ( F  e.  ( S RingHom  T )  <->  F  e.  ( S RingHom  U ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200    C_ wss 3197   ran crn 4720   ` cfv 5318  (class class class)co 6007   ↾s cress 13041   MndHom cmhm 13498  SubMndcsubmnd 13499  SubGrpcsubg 13712    GrpHom cghm 13785  mulGrpcmgp 13891   Ringcrg 13967   RingHom crh 14122  SubRingcsubrg 14189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-addass 8109  ax-i2m1 8112  ax-0lt1 8113  ax-0id 8115  ax-rnegex 8116  ax-pre-ltirr 8119  ax-pre-lttrn 8121  ax-pre-ltadd 8123
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-map 6805  df-pnf 8191  df-mnf 8192  df-ltxr 8194  df-inn 9119  df-2 9177  df-3 9178  df-ndx 13043  df-slot 13044  df-base 13046  df-sets 13047  df-iress 13048  df-plusg 13131  df-mulr 13132  df-0g 13299  df-mgm 13397  df-sgrp 13443  df-mnd 13458  df-mhm 13500  df-submnd 13501  df-grp 13544  df-minusg 13545  df-subg 13715  df-ghm 13786  df-mgp 13892  df-ur 13931  df-ring 13969  df-rhm 14124  df-subrg 14191
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator