ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resrhm Unicode version

Theorem resrhm 13880
Description: Restriction of a ring homomorphism to a subring is a homomorphism. (Contributed by Mario Carneiro, 12-Mar-2015.)
Hypothesis
Ref Expression
resrhm.u  |-  U  =  ( Ss  X )
Assertion
Ref Expression
resrhm  |-  ( ( F  e.  ( S RingHom  T )  /\  X  e.  (SubRing `  S )
)  ->  ( F  |`  X )  e.  ( U RingHom  T ) )

Proof of Theorem resrhm
StepHypRef Expression
1 rhmrcl2 13788 . . 3  |-  ( F  e.  ( S RingHom  T
)  ->  T  e.  Ring )
2 resrhm.u . . . 4  |-  U  =  ( Ss  X )
32subrgring 13856 . . 3  |-  ( X  e.  (SubRing `  S
)  ->  U  e.  Ring )
41, 3anim12ci 339 . 2  |-  ( ( F  e.  ( S RingHom  T )  /\  X  e.  (SubRing `  S )
)  ->  ( U  e.  Ring  /\  T  e.  Ring ) )
5 rhmghm 13794 . . . 4  |-  ( F  e.  ( S RingHom  T
)  ->  F  e.  ( S  GrpHom  T ) )
6 subrgsubg 13859 . . . 4  |-  ( X  e.  (SubRing `  S
)  ->  X  e.  (SubGrp `  S ) )
72resghm 13466 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  X  e.  (SubGrp `  S )
)  ->  ( F  |`  X )  e.  ( U  GrpHom  T ) )
85, 6, 7syl2an 289 . . 3  |-  ( ( F  e.  ( S RingHom  T )  /\  X  e.  (SubRing `  S )
)  ->  ( F  |`  X )  e.  ( U  GrpHom  T ) )
9 eqid 2196 . . . . . 6  |-  (mulGrp `  S )  =  (mulGrp `  S )
10 eqid 2196 . . . . . 6  |-  (mulGrp `  T )  =  (mulGrp `  T )
119, 10rhmmhm 13791 . . . . 5  |-  ( F  e.  ( S RingHom  T
)  ->  F  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  T ) ) )
129subrgsubm 13866 . . . . 5  |-  ( X  e.  (SubRing `  S
)  ->  X  e.  (SubMnd `  (mulGrp `  S
) ) )
13 eqid 2196 . . . . . 6  |-  ( (mulGrp `  S )s  X )  =  ( (mulGrp `  S )s  X
)
1413resmhm 13189 . . . . 5  |-  ( ( F  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  T ) )  /\  X  e.  (SubMnd `  (mulGrp `  S ) ) )  ->  ( F  |`  X )  e.  ( ( (mulGrp `  S
)s 
X ) MndHom  (mulGrp `  T
) ) )
1511, 12, 14syl2an 289 . . . 4  |-  ( ( F  e.  ( S RingHom  T )  /\  X  e.  (SubRing `  S )
)  ->  ( F  |`  X )  e.  ( ( (mulGrp `  S
)s 
X ) MndHom  (mulGrp `  T
) ) )
16 rhmrcl1 13787 . . . . . 6  |-  ( F  e.  ( S RingHom  T
)  ->  S  e.  Ring )
172, 9mgpress 13563 . . . . . 6  |-  ( ( S  e.  Ring  /\  X  e.  (SubRing `  S )
)  ->  ( (mulGrp `  S )s  X )  =  (mulGrp `  U ) )
1816, 17sylan 283 . . . . 5  |-  ( ( F  e.  ( S RingHom  T )  /\  X  e.  (SubRing `  S )
)  ->  ( (mulGrp `  S )s  X )  =  (mulGrp `  U ) )
1918oveq1d 5940 . . . 4  |-  ( ( F  e.  ( S RingHom  T )  /\  X  e.  (SubRing `  S )
)  ->  ( (
(mulGrp `  S )s  X
) MndHom  (mulGrp `  T )
)  =  ( (mulGrp `  U ) MndHom  (mulGrp `  T ) ) )
2015, 19eleqtrd 2275 . . 3  |-  ( ( F  e.  ( S RingHom  T )  /\  X  e.  (SubRing `  S )
)  ->  ( F  |`  X )  e.  ( (mulGrp `  U ) MndHom  (mulGrp `  T ) ) )
218, 20jca 306 . 2  |-  ( ( F  e.  ( S RingHom  T )  /\  X  e.  (SubRing `  S )
)  ->  ( ( F  |`  X )  e.  ( U  GrpHom  T )  /\  ( F  |`  X )  e.  ( (mulGrp `  U ) MndHom  (mulGrp `  T ) ) ) )
22 eqid 2196 . . 3  |-  (mulGrp `  U )  =  (mulGrp `  U )
2322, 10isrhm 13790 . 2  |-  ( ( F  |`  X )  e.  ( U RingHom  T )  <->  ( ( U  e.  Ring  /\  T  e.  Ring )  /\  ( ( F  |`  X )  e.  ( U  GrpHom  T )  /\  ( F  |`  X )  e.  ( (mulGrp `  U ) MndHom  (mulGrp `  T
) ) ) ) )
244, 21, 23sylanbrc 417 1  |-  ( ( F  e.  ( S RingHom  T )  /\  X  e.  (SubRing `  S )
)  ->  ( F  |`  X )  e.  ( U RingHom  T ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167    |` cres 4666   ` cfv 5259  (class class class)co 5925   ↾s cress 12704   MndHom cmhm 13159  SubMndcsubmnd 13160  SubGrpcsubg 13373    GrpHom cghm 13446  mulGrpcmgp 13552   Ringcrg 13628   RingHom crh 13782  SubRingcsubrg 13849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-pre-ltirr 8008  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-map 6718  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-inn 9008  df-2 9066  df-3 9067  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-iress 12711  df-plusg 12793  df-mulr 12794  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-mhm 13161  df-submnd 13162  df-grp 13205  df-subg 13376  df-ghm 13447  df-mgp 13553  df-ur 13592  df-ring 13630  df-rhm 13784  df-subrg 13851
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator