![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > zringsubgval | Unicode version |
Description: Subtraction in the ring of integers. (Contributed by AV, 3-Aug-2019.) |
Ref | Expression |
---|---|
zringsubgval.m |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
zringsubgval |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zsubrg 14055 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | subrgsubg 13711 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
4 | cnfldsub 14049 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | df-zring 14061 |
. . 3
![]() ![]() ![]() ![]() ![]() | |
6 | zringsubgval.m |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | 4, 5, 6 | subgsub 13249 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 3, 7 | mp3an1 1335 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4462 ax-setind 4567 ax-cnex 7957 ax-resscn 7958 ax-1cn 7959 ax-1re 7960 ax-icn 7961 ax-addcl 7962 ax-addrcl 7963 ax-mulcl 7964 ax-mulrcl 7965 ax-addcom 7966 ax-mulcom 7967 ax-addass 7968 ax-mulass 7969 ax-distr 7970 ax-i2m1 7971 ax-0lt1 7972 ax-1rid 7973 ax-0id 7974 ax-rnegex 7975 ax-precex 7976 ax-cnre 7977 ax-pre-ltirr 7978 ax-pre-ltwlin 7979 ax-pre-lttrn 7980 ax-pre-apti 7981 ax-pre-ltadd 7982 ax-pre-mulgt0 7983 ax-addf 7988 ax-mulf 7989 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-tp 3626 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4322 df-xp 4663 df-rel 4664 df-cnv 4665 df-co 4666 df-dm 4667 df-rn 4668 df-res 4669 df-ima 4670 df-iota 5211 df-fun 5252 df-fn 5253 df-f 5254 df-f1 5255 df-fo 5256 df-f1o 5257 df-fv 5258 df-riota 5869 df-ov 5917 df-oprab 5918 df-mpo 5919 df-1st 6188 df-2nd 6189 df-pnf 8050 df-mnf 8051 df-xr 8052 df-ltxr 8053 df-le 8054 df-sub 8186 df-neg 8187 df-reap 8588 df-inn 8977 df-2 9035 df-3 9036 df-4 9037 df-5 9038 df-6 9039 df-7 9040 df-8 9041 df-9 9042 df-n0 9235 df-z 9312 df-dec 9443 df-uz 9587 df-fz 10069 df-cj 10980 df-struct 12614 df-ndx 12615 df-slot 12616 df-base 12618 df-sets 12619 df-iress 12620 df-plusg 12702 df-mulr 12703 df-starv 12704 df-0g 12863 df-mgm 12933 df-sgrp 12979 df-mnd 12992 df-grp 13069 df-minusg 13070 df-sbg 13071 df-subg 13233 df-cmn 13349 df-mgp 13405 df-ur 13444 df-ring 13482 df-cring 13483 df-subrg 13703 df-icnfld 14036 df-zring 14061 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |