ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvply2g Unicode version

Theorem dvply2g 15110
Description: The derivative of a polynomial with coefficients in a subring is a polynomial with coefficients in the same ring. (Contributed by Mario Carneiro, 1-Jan-2017.) (Revised by GG, 30-Apr-2025.)
Assertion
Ref Expression
dvply2g  |-  ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  ->  ( CC  _D  F )  e.  (Poly `  S ) )

Proof of Theorem dvply2g
Dummy variables  a  b  c  d  p  u  v  k  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elply2 15079 . . . 4  |-  ( F  e.  (Poly `  S
)  <->  ( S  C_  CC  /\  E. d  e. 
NN0  E. p  e.  ( ( S  u.  {
0 } )  ^m  NN0 ) ( ( p
" ( ZZ>= `  (
d  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k )  x.  (
z ^ k ) ) ) ) ) )
21simprbi 275 . . 3  |-  ( F  e.  (Poly `  S
)  ->  E. d  e.  NN0  E. p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( p
" ( ZZ>= `  (
d  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k )  x.  (
z ^ k ) ) ) ) )
32adantl 277 . 2  |-  ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  ->  E. d  e.  NN0  E. p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( p
" ( ZZ>= `  (
d  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k )  x.  (
z ^ k ) ) ) ) )
4 plyf 15081 . . . . . . . . . 10  |-  ( F  e.  (Poly `  S
)  ->  F : CC
--> CC )
54adantl 277 . . . . . . . . 9  |-  ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  ->  F : CC
--> CC )
65feqmptd 5617 . . . . . . . 8  |-  ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  ->  F  =  ( a  e.  CC  |->  ( F `  a ) ) )
76ad2antrr 488 . . . . . . 7  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  ->  F  =  ( a  e.  CC  |->  ( F `  a ) ) )
8 simplrl 535 . . . . . . . . . 10  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
d  e.  NN0 )
98adantr 276 . . . . . . . . 9  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  a  e.  CC )  ->  d  e.  NN0 )
10 elmapi 6738 . . . . . . . . . . . . 13  |-  ( p  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  ->  p : NN0 --> ( S  u.  { 0 } ) )
1110ad2antll 491 . . . . . . . . . . . 12  |-  ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S ) )  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  ->  p : NN0 --> ( S  u.  { 0 } ) )
1211adantr 276 . . . . . . . . . . 11  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  ->  p : NN0 --> ( S  u.  { 0 } ) )
13 cnfldbas 14194 . . . . . . . . . . . . . 14  |-  CC  =  ( Base ` fld )
1413subrgss 13856 . . . . . . . . . . . . 13  |-  ( S  e.  (SubRing ` fld )  ->  S  C_  CC )
15 0cn 8037 . . . . . . . . . . . . . 14  |-  0  e.  CC
16 snssi 3767 . . . . . . . . . . . . . 14  |-  ( 0  e.  CC  ->  { 0 }  C_  CC )
1715, 16mp1i 10 . . . . . . . . . . . . 13  |-  ( S  e.  (SubRing ` fld )  ->  { 0 }  C_  CC )
1814, 17unssd 3340 . . . . . . . . . . . 12  |-  ( S  e.  (SubRing ` fld )  ->  ( S  u.  { 0 } )  C_  CC )
1918ad3antrrr 492 . . . . . . . . . . 11  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
( S  u.  {
0 } )  C_  CC )
2012, 19fssd 5423 . . . . . . . . . 10  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  ->  p : NN0 --> CC )
2120adantr 276 . . . . . . . . 9  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  a  e.  CC )  ->  p : NN0 --> CC )
22 simplrl 535 . . . . . . . . 9  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  a  e.  CC )  ->  ( p " ( ZZ>=
`  ( d  +  1 ) ) )  =  { 0 } )
23 simplrr 536 . . . . . . . . 9  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  a  e.  CC )  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d
) ( ( p `
 k )  x.  ( z ^ k
) ) ) )
24 nn0z 9365 . . . . . . . . . . . . 13  |-  ( d  e.  NN0  ->  d  e.  ZZ )
2524uzidd 9635 . . . . . . . . . . . 12  |-  ( d  e.  NN0  ->  d  e.  ( ZZ>= `  d )
)
26 peano2uz 9676 . . . . . . . . . . . 12  |-  ( d  e.  ( ZZ>= `  d
)  ->  ( d  +  1 )  e.  ( ZZ>= `  d )
)
2725, 26syl 14 . . . . . . . . . . 11  |-  ( d  e.  NN0  ->  ( d  +  1 )  e.  ( ZZ>= `  d )
)
288, 27syl 14 . . . . . . . . . 10  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
( d  +  1 )  e.  ( ZZ>= `  d ) )
2928adantr 276 . . . . . . . . 9  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  a  e.  CC )  ->  ( d  +  1 )  e.  ( ZZ>= `  d ) )
30 simpr 110 . . . . . . . . 9  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  a  e.  CC )  ->  a  e.  CC )
319, 21, 22, 23, 29, 30plycoeid3 15101 . . . . . . . 8  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  a  e.  CC )  ->  ( F `  a
)  =  sum_ b  e.  ( 0 ... (
d  +  1 ) ) ( ( p `
 b )  x.  ( a ^ b
) ) )
3231mpteq2dva 4124 . . . . . . 7  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
( a  e.  CC  |->  ( F `  a ) )  =  ( a  e.  CC  |->  sum_ b  e.  ( 0 ... (
d  +  1 ) ) ( ( p `
 b )  x.  ( a ^ b
) ) ) )
337, 32eqtrd 2229 . . . . . 6  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  ->  F  =  ( a  e.  CC  |->  sum_ b  e.  ( 0 ... ( d  +  1 ) ) ( ( p `  b )  x.  (
a ^ b ) ) ) )
348nn0cnd 9323 . . . . . . . . . . 11  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
d  e.  CC )
35 1cnd 8061 . . . . . . . . . . 11  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
1  e.  CC )
3634, 35pncand 8357 . . . . . . . . . 10  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
( ( d  +  1 )  -  1 )  =  d )
3736eqcomd 2202 . . . . . . . . 9  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
d  =  ( ( d  +  1 )  -  1 ) )
3837oveq2d 5941 . . . . . . . 8  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
( 0 ... d
)  =  ( 0 ... ( ( d  +  1 )  - 
1 ) ) )
3938sumeq1d 11550 . . . . . . 7  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  ->  sum_ b  e.  ( 0 ... d ) ( ( ( c  e. 
NN0  |->  ( ( c  +  1 )  x.  ( p `  (
c  +  1 ) ) ) ) `  b )  x.  (
a ^ b ) )  =  sum_ b  e.  ( 0 ... (
( d  +  1 )  -  1 ) ) ( ( ( c  e.  NN0  |->  ( ( c  +  1 )  x.  ( p `  ( c  +  1 ) ) ) ) `
 b )  x.  ( a ^ b
) ) )
4039mpteq2dv 4125 . . . . . 6  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
( a  e.  CC  |->  sum_ b  e.  ( 0 ... d ) ( ( ( c  e. 
NN0  |->  ( ( c  +  1 )  x.  ( p `  (
c  +  1 ) ) ) ) `  b )  x.  (
a ^ b ) ) )  =  ( a  e.  CC  |->  sum_ b  e.  ( 0 ... ( ( d  +  1 )  - 
1 ) ) ( ( ( c  e. 
NN0  |->  ( ( c  +  1 )  x.  ( p `  (
c  +  1 ) ) ) ) `  b )  x.  (
a ^ b ) ) ) )
41 oveq1 5932 . . . . . . . 8  |-  ( c  =  b  ->  (
c  +  1 )  =  ( b  +  1 ) )
42 fvoveq1 5948 . . . . . . . 8  |-  ( c  =  b  ->  (
p `  ( c  +  1 ) )  =  ( p `  ( b  +  1 ) ) )
4341, 42oveq12d 5943 . . . . . . 7  |-  ( c  =  b  ->  (
( c  +  1 )  x.  ( p `
 ( c  +  1 ) ) )  =  ( ( b  +  1 )  x.  ( p `  (
b  +  1 ) ) ) )
4443cbvmptv 4130 . . . . . 6  |-  ( c  e.  NN0  |->  ( ( c  +  1 )  x.  ( p `  ( c  +  1 ) ) ) )  =  ( b  e. 
NN0  |->  ( ( b  +  1 )  x.  ( p `  (
b  +  1 ) ) ) )
45 peano2nn0 9308 . . . . . . 7  |-  ( d  e.  NN0  ->  ( d  +  1 )  e. 
NN0 )
468, 45syl 14 . . . . . 6  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
( d  +  1 )  e.  NN0 )
4733, 40, 20, 44, 46dvply1 15109 . . . . 5  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
( CC  _D  F
)  =  ( a  e.  CC  |->  sum_ b  e.  ( 0 ... d
) ( ( ( c  e.  NN0  |->  ( ( c  +  1 )  x.  ( p `  ( c  +  1 ) ) ) ) `
 b )  x.  ( a ^ b
) ) ) )
4814ad3antrrr 492 . . . . . 6  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  ->  S  C_  CC )
49 elfznn0 10208 . . . . . . 7  |-  ( b  e.  ( 0 ... d )  ->  b  e.  NN0 )
50 peano2nn0 9308 . . . . . . . . . . . . 13  |-  ( c  e.  NN0  ->  ( c  +  1 )  e. 
NN0 )
5150adantl 277 . . . . . . . . . . . 12  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  c  e.  NN0 )  -> 
( c  +  1 )  e.  NN0 )
5251nn0cnd 9323 . . . . . . . . . . 11  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  c  e.  NN0 )  -> 
( c  +  1 )  e.  CC )
5320adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  c  e.  NN0 )  ->  p : NN0 --> CC )
5453, 51ffvelcdmd 5701 . . . . . . . . . . 11  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  c  e.  NN0 )  -> 
( p `  (
c  +  1 ) )  e.  CC )
5552, 54mulcld 8066 . . . . . . . . . . 11  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  c  e.  NN0 )  -> 
( ( c  +  1 )  x.  (
p `  ( c  +  1 ) ) )  e.  CC )
56 oveq1 5932 . . . . . . . . . . . 12  |-  ( u  =  ( c  +  1 )  ->  (
u  x.  v )  =  ( ( c  +  1 )  x.  v ) )
57 oveq2 5933 . . . . . . . . . . . 12  |-  ( v  =  ( p `  ( c  +  1 ) )  ->  (
( c  +  1 )  x.  v )  =  ( ( c  +  1 )  x.  ( p `  (
c  +  1 ) ) ) )
58 eqid 2196 . . . . . . . . . . . 12  |-  ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) )  =  ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) )
5956, 57, 58ovmpog 6061 . . . . . . . . . . 11  |-  ( ( ( c  +  1 )  e.  CC  /\  ( p `  (
c  +  1 ) )  e.  CC  /\  ( ( c  +  1 )  x.  (
p `  ( c  +  1 ) ) )  e.  CC )  ->  ( ( c  +  1 ) ( u  e.  CC , 
v  e.  CC  |->  ( u  x.  v ) ) ( p `  ( c  +  1 ) ) )  =  ( ( c  +  1 )  x.  (
p `  ( c  +  1 ) ) ) )
6052, 54, 55, 59syl3anc 1249 . . . . . . . . . 10  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  c  e.  NN0 )  -> 
( ( c  +  1 ) ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) ) ( p `  (
c  +  1 ) ) )  =  ( ( c  +  1 )  x.  ( p `
 ( c  +  1 ) ) ) )
61 simp-4l 541 . . . . . . . . . . 11  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  c  e.  NN0 )  ->  S  e.  (SubRing ` fld ) )
62 zsssubrg 14219 . . . . . . . . . . . . 13  |-  ( S  e.  (SubRing ` fld )  ->  ZZ  C_  S )
6362ad4antr 494 . . . . . . . . . . . 12  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  c  e.  NN0 )  ->  ZZ  C_  S )
6451nn0zd 9465 . . . . . . . . . . . 12  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  c  e.  NN0 )  -> 
( c  +  1 )  e.  ZZ )
6563, 64sseldd 3185 . . . . . . . . . . 11  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  c  e.  NN0 )  -> 
( c  +  1 )  e.  S )
6612adantr 276 . . . . . . . . . . . . 13  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  c  e.  NN0 )  ->  p : NN0 --> ( S  u.  { 0 } ) )
67 subrgsubg 13861 . . . . . . . . . . . . . . . . . 18  |-  ( S  e.  (SubRing ` fld )  ->  S  e.  (SubGrp ` fld ) )
68 cnfld0 14205 . . . . . . . . . . . . . . . . . . 19  |-  0  =  ( 0g ` fld )
6968subg0cl 13390 . . . . . . . . . . . . . . . . . 18  |-  ( S  e.  (SubGrp ` fld )  ->  0  e.  S )
7067, 69syl 14 . . . . . . . . . . . . . . . . 17  |-  ( S  e.  (SubRing ` fld )  ->  0  e.  S )
7170ad4antr 494 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  c  e.  NN0 )  -> 
0  e.  S )
7271snssd 3768 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  c  e.  NN0 )  ->  { 0 }  C_  S )
73 ssequn2 3337 . . . . . . . . . . . . . . 15  |-  ( { 0 }  C_  S  <->  ( S  u.  { 0 } )  =  S )
7472, 73sylib 122 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  c  e.  NN0 )  -> 
( S  u.  {
0 } )  =  S )
7574feq3d 5399 . . . . . . . . . . . . 13  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  c  e.  NN0 )  -> 
( p : NN0 --> ( S  u.  { 0 } )  <->  p : NN0
--> S ) )
7666, 75mpbid 147 . . . . . . . . . . . 12  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  c  e.  NN0 )  ->  p : NN0 --> S )
7776, 51ffvelcdmd 5701 . . . . . . . . . . 11  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  c  e.  NN0 )  -> 
( p `  (
c  +  1 ) )  e.  S )
78 mpocnfldmul 14197 . . . . . . . . . . . 12  |-  ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) )  =  ( .r ` fld )
7978subrgmcl 13867 . . . . . . . . . . 11  |-  ( ( S  e.  (SubRing ` fld )  /\  (
c  +  1 )  e.  S  /\  (
p `  ( c  +  1 ) )  e.  S )  -> 
( ( c  +  1 ) ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) ) ( p `  (
c  +  1 ) ) )  e.  S
)
8061, 65, 77, 79syl3anc 1249 . . . . . . . . . 10  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  c  e.  NN0 )  -> 
( ( c  +  1 ) ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) ) ( p `  (
c  +  1 ) ) )  e.  S
)
8160, 80eqeltrrd 2274 . . . . . . . . 9  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  c  e.  NN0 )  -> 
( ( c  +  1 )  x.  (
p `  ( c  +  1 ) ) )  e.  S )
8281fmpttd 5720 . . . . . . . 8  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
( c  e.  NN0  |->  ( ( c  +  1 )  x.  (
p `  ( c  +  1 ) ) ) ) : NN0 --> S )
8382ffvelcdmda 5700 . . . . . . 7  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  b  e.  NN0 )  -> 
( ( c  e. 
NN0  |->  ( ( c  +  1 )  x.  ( p `  (
c  +  1 ) ) ) ) `  b )  e.  S
)
8449, 83sylan2 286 . . . . . 6  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  b  e.  ( 0 ... d ) )  ->  ( ( c  e.  NN0  |->  ( ( c  +  1 )  x.  ( p `  ( c  +  1 ) ) ) ) `
 b )  e.  S )
8548, 8, 84elplyd 15085 . . . . 5  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
( a  e.  CC  |->  sum_ b  e.  ( 0 ... d ) ( ( ( c  e. 
NN0  |->  ( ( c  +  1 )  x.  ( p `  (
c  +  1 ) ) ) ) `  b )  x.  (
a ^ b ) ) )  e.  (Poly `  S ) )
8647, 85eqeltrd 2273 . . . 4  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
( CC  _D  F
)  e.  (Poly `  S ) )
8786ex 115 . . 3  |-  ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S ) )  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  -> 
( ( ( p
" ( ZZ>= `  (
d  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k )  x.  (
z ^ k ) ) ) )  -> 
( CC  _D  F
)  e.  (Poly `  S ) ) )
8887rexlimdvva 2622 . 2  |-  ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  ->  ( E. d  e.  NN0  E. p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( p
" ( ZZ>= `  (
d  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k )  x.  (
z ^ k ) ) ) )  -> 
( CC  _D  F
)  e.  (Poly `  S ) ) )
893, 88mpd 13 1  |-  ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  ->  ( CC  _D  F )  e.  (Poly `  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   E.wrex 2476    u. cun 3155    C_ wss 3157   {csn 3623    |-> cmpt 4095   "cima 4667   -->wf 5255   ` cfv 5259  (class class class)co 5925    e. cmpo 5927    ^m cmap 6716   CCcc 7896   0cc0 7898   1c1 7899    + caddc 7901    x. cmul 7903    - cmin 8216   NN0cn0 9268   ZZcz 9345   ZZ>=cuz 9620   ...cfz 10102   ^cexp 10649   sum_csu 11537  SubGrpcsubg 13375  SubRingcsubrg 13851  ℂfldccnfld 14190    _D cdv 14999  Polycply 15072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016  ax-arch 8017  ax-caucvg 8018  ax-addf 8020  ax-mulf 8021
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-tp 3631  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-of 6139  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-oadd 6487  df-er 6601  df-map 6718  df-pm 6719  df-en 6809  df-dom 6810  df-fin 6811  df-sup 7059  df-inf 7060  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-5 9071  df-6 9072  df-7 9073  df-8 9074  df-9 9075  df-n0 9269  df-z 9346  df-dec 9477  df-uz 9621  df-q 9713  df-rp 9748  df-xneg 9866  df-xadd 9867  df-fz 10103  df-fzo 10237  df-seqfrec 10559  df-exp 10650  df-ihash 10887  df-cj 11026  df-re 11027  df-im 11028  df-rsqrt 11182  df-abs 11183  df-clim 11463  df-sumdc 11538  df-struct 12707  df-ndx 12708  df-slot 12709  df-base 12711  df-sets 12712  df-iress 12713  df-plusg 12795  df-mulr 12796  df-starv 12797  df-tset 12801  df-ple 12802  df-ds 12804  df-unif 12805  df-rest 12945  df-topn 12946  df-0g 12962  df-topgen 12964  df-mgm 13060  df-sgrp 13106  df-mnd 13121  df-grp 13207  df-minusg 13208  df-mulg 13328  df-subg 13378  df-cmn 13494  df-mgp 13555  df-ur 13594  df-ring 13632  df-cring 13633  df-subrg 13853  df-psmet 14177  df-xmet 14178  df-met 14179  df-bl 14180  df-mopn 14181  df-fg 14183  df-metu 14184  df-cnfld 14191  df-top 14342  df-topon 14355  df-topsp 14375  df-bases 14387  df-ntr 14440  df-cn 14532  df-cnp 14533  df-tx 14597  df-xms 14683  df-ms 14684  df-cncf 14915  df-limced 15000  df-dvap 15001  df-ply 15074
This theorem is referenced by:  dvply2  15111
  Copyright terms: Public domain W3C validator