ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvply2g Unicode version

Theorem dvply2g 15405
Description: The derivative of a polynomial with coefficients in a subring is a polynomial with coefficients in the same ring. (Contributed by Mario Carneiro, 1-Jan-2017.) (Revised by GG, 30-Apr-2025.)
Assertion
Ref Expression
dvply2g  |-  ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  ->  ( CC  _D  F )  e.  (Poly `  S ) )

Proof of Theorem dvply2g
Dummy variables  a  b  c  d  p  u  v  k  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elply2 15374 . . . 4  |-  ( F  e.  (Poly `  S
)  <->  ( S  C_  CC  /\  E. d  e. 
NN0  E. p  e.  ( ( S  u.  {
0 } )  ^m  NN0 ) ( ( p
" ( ZZ>= `  (
d  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k )  x.  (
z ^ k ) ) ) ) ) )
21simprbi 275 . . 3  |-  ( F  e.  (Poly `  S
)  ->  E. d  e.  NN0  E. p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( p
" ( ZZ>= `  (
d  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k )  x.  (
z ^ k ) ) ) ) )
32adantl 277 . 2  |-  ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  ->  E. d  e.  NN0  E. p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( p
" ( ZZ>= `  (
d  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k )  x.  (
z ^ k ) ) ) ) )
4 plyf 15376 . . . . . . . . . 10  |-  ( F  e.  (Poly `  S
)  ->  F : CC
--> CC )
54adantl 277 . . . . . . . . 9  |-  ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  ->  F : CC
--> CC )
65feqmptd 5660 . . . . . . . 8  |-  ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  ->  F  =  ( a  e.  CC  |->  ( F `  a ) ) )
76ad2antrr 488 . . . . . . 7  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  ->  F  =  ( a  e.  CC  |->  ( F `  a ) ) )
8 simplrl 535 . . . . . . . . . 10  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
d  e.  NN0 )
98adantr 276 . . . . . . . . 9  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  a  e.  CC )  ->  d  e.  NN0 )
10 elmapi 6787 . . . . . . . . . . . . 13  |-  ( p  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  ->  p : NN0 --> ( S  u.  { 0 } ) )
1110ad2antll 491 . . . . . . . . . . . 12  |-  ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S ) )  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  ->  p : NN0 --> ( S  u.  { 0 } ) )
1211adantr 276 . . . . . . . . . . 11  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  ->  p : NN0 --> ( S  u.  { 0 } ) )
13 cnfldbas 14489 . . . . . . . . . . . . . 14  |-  CC  =  ( Base ` fld )
1413subrgss 14151 . . . . . . . . . . . . 13  |-  ( S  e.  (SubRing ` fld )  ->  S  C_  CC )
15 0cn 8106 . . . . . . . . . . . . . 14  |-  0  e.  CC
16 snssi 3791 . . . . . . . . . . . . . 14  |-  ( 0  e.  CC  ->  { 0 }  C_  CC )
1715, 16mp1i 10 . . . . . . . . . . . . 13  |-  ( S  e.  (SubRing ` fld )  ->  { 0 }  C_  CC )
1814, 17unssd 3360 . . . . . . . . . . . 12  |-  ( S  e.  (SubRing ` fld )  ->  ( S  u.  { 0 } )  C_  CC )
1918ad3antrrr 492 . . . . . . . . . . 11  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
( S  u.  {
0 } )  C_  CC )
2012, 19fssd 5462 . . . . . . . . . 10  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  ->  p : NN0 --> CC )
2120adantr 276 . . . . . . . . 9  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  a  e.  CC )  ->  p : NN0 --> CC )
22 simplrl 535 . . . . . . . . 9  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  a  e.  CC )  ->  ( p " ( ZZ>=
`  ( d  +  1 ) ) )  =  { 0 } )
23 simplrr 536 . . . . . . . . 9  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  a  e.  CC )  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d
) ( ( p `
 k )  x.  ( z ^ k
) ) ) )
24 nn0z 9434 . . . . . . . . . . . . 13  |-  ( d  e.  NN0  ->  d  e.  ZZ )
2524uzidd 9705 . . . . . . . . . . . 12  |-  ( d  e.  NN0  ->  d  e.  ( ZZ>= `  d )
)
26 peano2uz 9746 . . . . . . . . . . . 12  |-  ( d  e.  ( ZZ>= `  d
)  ->  ( d  +  1 )  e.  ( ZZ>= `  d )
)
2725, 26syl 14 . . . . . . . . . . 11  |-  ( d  e.  NN0  ->  ( d  +  1 )  e.  ( ZZ>= `  d )
)
288, 27syl 14 . . . . . . . . . 10  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
( d  +  1 )  e.  ( ZZ>= `  d ) )
2928adantr 276 . . . . . . . . 9  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  a  e.  CC )  ->  ( d  +  1 )  e.  ( ZZ>= `  d ) )
30 simpr 110 . . . . . . . . 9  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  a  e.  CC )  ->  a  e.  CC )
319, 21, 22, 23, 29, 30plycoeid3 15396 . . . . . . . 8  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  a  e.  CC )  ->  ( F `  a
)  =  sum_ b  e.  ( 0 ... (
d  +  1 ) ) ( ( p `
 b )  x.  ( a ^ b
) ) )
3231mpteq2dva 4153 . . . . . . 7  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
( a  e.  CC  |->  ( F `  a ) )  =  ( a  e.  CC  |->  sum_ b  e.  ( 0 ... (
d  +  1 ) ) ( ( p `
 b )  x.  ( a ^ b
) ) ) )
337, 32eqtrd 2242 . . . . . 6  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  ->  F  =  ( a  e.  CC  |->  sum_ b  e.  ( 0 ... ( d  +  1 ) ) ( ( p `  b )  x.  (
a ^ b ) ) ) )
348nn0cnd 9392 . . . . . . . . . . 11  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
d  e.  CC )
35 1cnd 8130 . . . . . . . . . . 11  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
1  e.  CC )
3634, 35pncand 8426 . . . . . . . . . 10  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
( ( d  +  1 )  -  1 )  =  d )
3736eqcomd 2215 . . . . . . . . 9  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
d  =  ( ( d  +  1 )  -  1 ) )
3837oveq2d 5990 . . . . . . . 8  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
( 0 ... d
)  =  ( 0 ... ( ( d  +  1 )  - 
1 ) ) )
3938sumeq1d 11843 . . . . . . 7  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  ->  sum_ b  e.  ( 0 ... d ) ( ( ( c  e. 
NN0  |->  ( ( c  +  1 )  x.  ( p `  (
c  +  1 ) ) ) ) `  b )  x.  (
a ^ b ) )  =  sum_ b  e.  ( 0 ... (
( d  +  1 )  -  1 ) ) ( ( ( c  e.  NN0  |->  ( ( c  +  1 )  x.  ( p `  ( c  +  1 ) ) ) ) `
 b )  x.  ( a ^ b
) ) )
4039mpteq2dv 4154 . . . . . 6  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
( a  e.  CC  |->  sum_ b  e.  ( 0 ... d ) ( ( ( c  e. 
NN0  |->  ( ( c  +  1 )  x.  ( p `  (
c  +  1 ) ) ) ) `  b )  x.  (
a ^ b ) ) )  =  ( a  e.  CC  |->  sum_ b  e.  ( 0 ... ( ( d  +  1 )  - 
1 ) ) ( ( ( c  e. 
NN0  |->  ( ( c  +  1 )  x.  ( p `  (
c  +  1 ) ) ) ) `  b )  x.  (
a ^ b ) ) ) )
41 oveq1 5981 . . . . . . . 8  |-  ( c  =  b  ->  (
c  +  1 )  =  ( b  +  1 ) )
42 fvoveq1 5997 . . . . . . . 8  |-  ( c  =  b  ->  (
p `  ( c  +  1 ) )  =  ( p `  ( b  +  1 ) ) )
4341, 42oveq12d 5992 . . . . . . 7  |-  ( c  =  b  ->  (
( c  +  1 )  x.  ( p `
 ( c  +  1 ) ) )  =  ( ( b  +  1 )  x.  ( p `  (
b  +  1 ) ) ) )
4443cbvmptv 4159 . . . . . 6  |-  ( c  e.  NN0  |->  ( ( c  +  1 )  x.  ( p `  ( c  +  1 ) ) ) )  =  ( b  e. 
NN0  |->  ( ( b  +  1 )  x.  ( p `  (
b  +  1 ) ) ) )
45 peano2nn0 9377 . . . . . . 7  |-  ( d  e.  NN0  ->  ( d  +  1 )  e. 
NN0 )
468, 45syl 14 . . . . . 6  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
( d  +  1 )  e.  NN0 )
4733, 40, 20, 44, 46dvply1 15404 . . . . 5  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
( CC  _D  F
)  =  ( a  e.  CC  |->  sum_ b  e.  ( 0 ... d
) ( ( ( c  e.  NN0  |->  ( ( c  +  1 )  x.  ( p `  ( c  +  1 ) ) ) ) `
 b )  x.  ( a ^ b
) ) ) )
4814ad3antrrr 492 . . . . . 6  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  ->  S  C_  CC )
49 elfznn0 10278 . . . . . . 7  |-  ( b  e.  ( 0 ... d )  ->  b  e.  NN0 )
50 peano2nn0 9377 . . . . . . . . . . . . 13  |-  ( c  e.  NN0  ->  ( c  +  1 )  e. 
NN0 )
5150adantl 277 . . . . . . . . . . . 12  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  c  e.  NN0 )  -> 
( c  +  1 )  e.  NN0 )
5251nn0cnd 9392 . . . . . . . . . . 11  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  c  e.  NN0 )  -> 
( c  +  1 )  e.  CC )
5320adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  c  e.  NN0 )  ->  p : NN0 --> CC )
5453, 51ffvelcdmd 5744 . . . . . . . . . . 11  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  c  e.  NN0 )  -> 
( p `  (
c  +  1 ) )  e.  CC )
5552, 54mulcld 8135 . . . . . . . . . . 11  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  c  e.  NN0 )  -> 
( ( c  +  1 )  x.  (
p `  ( c  +  1 ) ) )  e.  CC )
56 oveq1 5981 . . . . . . . . . . . 12  |-  ( u  =  ( c  +  1 )  ->  (
u  x.  v )  =  ( ( c  +  1 )  x.  v ) )
57 oveq2 5982 . . . . . . . . . . . 12  |-  ( v  =  ( p `  ( c  +  1 ) )  ->  (
( c  +  1 )  x.  v )  =  ( ( c  +  1 )  x.  ( p `  (
c  +  1 ) ) ) )
58 eqid 2209 . . . . . . . . . . . 12  |-  ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) )  =  ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) )
5956, 57, 58ovmpog 6110 . . . . . . . . . . 11  |-  ( ( ( c  +  1 )  e.  CC  /\  ( p `  (
c  +  1 ) )  e.  CC  /\  ( ( c  +  1 )  x.  (
p `  ( c  +  1 ) ) )  e.  CC )  ->  ( ( c  +  1 ) ( u  e.  CC , 
v  e.  CC  |->  ( u  x.  v ) ) ( p `  ( c  +  1 ) ) )  =  ( ( c  +  1 )  x.  (
p `  ( c  +  1 ) ) ) )
6052, 54, 55, 59syl3anc 1252 . . . . . . . . . 10  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  c  e.  NN0 )  -> 
( ( c  +  1 ) ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) ) ( p `  (
c  +  1 ) ) )  =  ( ( c  +  1 )  x.  ( p `
 ( c  +  1 ) ) ) )
61 simp-4l 541 . . . . . . . . . . 11  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  c  e.  NN0 )  ->  S  e.  (SubRing ` fld ) )
62 zsssubrg 14514 . . . . . . . . . . . . 13  |-  ( S  e.  (SubRing ` fld )  ->  ZZ  C_  S )
6362ad4antr 494 . . . . . . . . . . . 12  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  c  e.  NN0 )  ->  ZZ  C_  S )
6451nn0zd 9535 . . . . . . . . . . . 12  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  c  e.  NN0 )  -> 
( c  +  1 )  e.  ZZ )
6563, 64sseldd 3205 . . . . . . . . . . 11  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  c  e.  NN0 )  -> 
( c  +  1 )  e.  S )
6612adantr 276 . . . . . . . . . . . . 13  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  c  e.  NN0 )  ->  p : NN0 --> ( S  u.  { 0 } ) )
67 subrgsubg 14156 . . . . . . . . . . . . . . . . . 18  |-  ( S  e.  (SubRing ` fld )  ->  S  e.  (SubGrp ` fld ) )
68 cnfld0 14500 . . . . . . . . . . . . . . . . . . 19  |-  0  =  ( 0g ` fld )
6968subg0cl 13685 . . . . . . . . . . . . . . . . . 18  |-  ( S  e.  (SubGrp ` fld )  ->  0  e.  S )
7067, 69syl 14 . . . . . . . . . . . . . . . . 17  |-  ( S  e.  (SubRing ` fld )  ->  0  e.  S )
7170ad4antr 494 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  c  e.  NN0 )  -> 
0  e.  S )
7271snssd 3792 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  c  e.  NN0 )  ->  { 0 }  C_  S )
73 ssequn2 3357 . . . . . . . . . . . . . . 15  |-  ( { 0 }  C_  S  <->  ( S  u.  { 0 } )  =  S )
7472, 73sylib 122 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  c  e.  NN0 )  -> 
( S  u.  {
0 } )  =  S )
7574feq3d 5438 . . . . . . . . . . . . 13  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  c  e.  NN0 )  -> 
( p : NN0 --> ( S  u.  { 0 } )  <->  p : NN0
--> S ) )
7666, 75mpbid 147 . . . . . . . . . . . 12  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  c  e.  NN0 )  ->  p : NN0 --> S )
7776, 51ffvelcdmd 5744 . . . . . . . . . . 11  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  c  e.  NN0 )  -> 
( p `  (
c  +  1 ) )  e.  S )
78 mpocnfldmul 14492 . . . . . . . . . . . 12  |-  ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) )  =  ( .r ` fld )
7978subrgmcl 14162 . . . . . . . . . . 11  |-  ( ( S  e.  (SubRing ` fld )  /\  (
c  +  1 )  e.  S  /\  (
p `  ( c  +  1 ) )  e.  S )  -> 
( ( c  +  1 ) ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) ) ( p `  (
c  +  1 ) ) )  e.  S
)
8061, 65, 77, 79syl3anc 1252 . . . . . . . . . 10  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  c  e.  NN0 )  -> 
( ( c  +  1 ) ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) ) ( p `  (
c  +  1 ) ) )  e.  S
)
8160, 80eqeltrrd 2287 . . . . . . . . 9  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  c  e.  NN0 )  -> 
( ( c  +  1 )  x.  (
p `  ( c  +  1 ) ) )  e.  S )
8281fmpttd 5763 . . . . . . . 8  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
( c  e.  NN0  |->  ( ( c  +  1 )  x.  (
p `  ( c  +  1 ) ) ) ) : NN0 --> S )
8382ffvelcdmda 5743 . . . . . . 7  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  b  e.  NN0 )  -> 
( ( c  e. 
NN0  |->  ( ( c  +  1 )  x.  ( p `  (
c  +  1 ) ) ) ) `  b )  e.  S
)
8449, 83sylan2 286 . . . . . 6  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  b  e.  ( 0 ... d ) )  ->  ( ( c  e.  NN0  |->  ( ( c  +  1 )  x.  ( p `  ( c  +  1 ) ) ) ) `
 b )  e.  S )
8548, 8, 84elplyd 15380 . . . . 5  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
( a  e.  CC  |->  sum_ b  e.  ( 0 ... d ) ( ( ( c  e. 
NN0  |->  ( ( c  +  1 )  x.  ( p `  (
c  +  1 ) ) ) ) `  b )  x.  (
a ^ b ) ) )  e.  (Poly `  S ) )
8647, 85eqeltrd 2286 . . . 4  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
( CC  _D  F
)  e.  (Poly `  S ) )
8786ex 115 . . 3  |-  ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S ) )  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  -> 
( ( ( p
" ( ZZ>= `  (
d  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k )  x.  (
z ^ k ) ) ) )  -> 
( CC  _D  F
)  e.  (Poly `  S ) ) )
8887rexlimdvva 2636 . 2  |-  ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  ->  ( E. d  e.  NN0  E. p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( p
" ( ZZ>= `  (
d  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k )  x.  (
z ^ k ) ) ) )  -> 
( CC  _D  F
)  e.  (Poly `  S ) ) )
893, 88mpd 13 1  |-  ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  ->  ( CC  _D  F )  e.  (Poly `  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1375    e. wcel 2180   E.wrex 2489    u. cun 3175    C_ wss 3177   {csn 3646    |-> cmpt 4124   "cima 4699   -->wf 5290   ` cfv 5294  (class class class)co 5974    e. cmpo 5976    ^m cmap 6765   CCcc 7965   0cc0 7967   1c1 7968    + caddc 7970    x. cmul 7972    - cmin 8285   NN0cn0 9337   ZZcz 9414   ZZ>=cuz 9690   ...cfz 10172   ^cexp 10727   sum_csu 11830  SubGrpcsubg 13670  SubRingcsubrg 14146  ℂfldccnfld 14485    _D cdv 15294  Polycply 15367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086  ax-caucvg 8087  ax-addf 8089  ax-mulf 8090
This theorem depends on definitions:  df-bi 117  df-stab 835  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-tp 3654  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-isom 5303  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-of 6188  df-1st 6256  df-2nd 6257  df-recs 6421  df-irdg 6486  df-frec 6507  df-1o 6532  df-oadd 6536  df-er 6650  df-map 6767  df-pm 6768  df-en 6858  df-dom 6859  df-fin 6860  df-sup 7119  df-inf 7120  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-5 9140  df-6 9141  df-7 9142  df-8 9143  df-9 9144  df-n0 9338  df-z 9415  df-dec 9547  df-uz 9691  df-q 9783  df-rp 9818  df-xneg 9936  df-xadd 9937  df-fz 10173  df-fzo 10307  df-seqfrec 10637  df-exp 10728  df-ihash 10965  df-cj 11319  df-re 11320  df-im 11321  df-rsqrt 11475  df-abs 11476  df-clim 11756  df-sumdc 11831  df-struct 13000  df-ndx 13001  df-slot 13002  df-base 13004  df-sets 13005  df-iress 13006  df-plusg 13089  df-mulr 13090  df-starv 13091  df-tset 13095  df-ple 13096  df-ds 13098  df-unif 13099  df-rest 13240  df-topn 13241  df-0g 13257  df-topgen 13259  df-mgm 13355  df-sgrp 13401  df-mnd 13416  df-grp 13502  df-minusg 13503  df-mulg 13623  df-subg 13673  df-cmn 13789  df-mgp 13850  df-ur 13889  df-ring 13927  df-cring 13928  df-subrg 14148  df-psmet 14472  df-xmet 14473  df-met 14474  df-bl 14475  df-mopn 14476  df-fg 14478  df-metu 14479  df-cnfld 14486  df-top 14637  df-topon 14650  df-topsp 14670  df-bases 14682  df-ntr 14735  df-cn 14827  df-cnp 14828  df-tx 14892  df-xms 14978  df-ms 14979  df-cncf 15210  df-limced 15295  df-dvap 15296  df-ply 15369
This theorem is referenced by:  dvply2  15406
  Copyright terms: Public domain W3C validator