ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvply2g Unicode version

Theorem dvply2g 15002
Description: The derivative of a polynomial with coefficients in a subring is a polynomial with coefficients in the same ring. (Contributed by Mario Carneiro, 1-Jan-2017.) (Revised by GG, 30-Apr-2025.)
Assertion
Ref Expression
dvply2g  |-  ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  ->  ( CC  _D  F )  e.  (Poly `  S ) )

Proof of Theorem dvply2g
Dummy variables  a  b  c  d  p  u  v  k  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elply2 14971 . . . 4  |-  ( F  e.  (Poly `  S
)  <->  ( S  C_  CC  /\  E. d  e. 
NN0  E. p  e.  ( ( S  u.  {
0 } )  ^m  NN0 ) ( ( p
" ( ZZ>= `  (
d  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k )  x.  (
z ^ k ) ) ) ) ) )
21simprbi 275 . . 3  |-  ( F  e.  (Poly `  S
)  ->  E. d  e.  NN0  E. p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( p
" ( ZZ>= `  (
d  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k )  x.  (
z ^ k ) ) ) ) )
32adantl 277 . 2  |-  ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  ->  E. d  e.  NN0  E. p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( p
" ( ZZ>= `  (
d  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k )  x.  (
z ^ k ) ) ) ) )
4 plyf 14973 . . . . . . . . . 10  |-  ( F  e.  (Poly `  S
)  ->  F : CC
--> CC )
54adantl 277 . . . . . . . . 9  |-  ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  ->  F : CC
--> CC )
65feqmptd 5614 . . . . . . . 8  |-  ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  ->  F  =  ( a  e.  CC  |->  ( F `  a ) ) )
76ad2antrr 488 . . . . . . 7  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  ->  F  =  ( a  e.  CC  |->  ( F `  a ) ) )
8 simplrl 535 . . . . . . . . . 10  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
d  e.  NN0 )
98adantr 276 . . . . . . . . 9  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  a  e.  CC )  ->  d  e.  NN0 )
10 elmapi 6729 . . . . . . . . . . . . 13  |-  ( p  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  ->  p : NN0 --> ( S  u.  { 0 } ) )
1110ad2antll 491 . . . . . . . . . . . 12  |-  ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S ) )  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  ->  p : NN0 --> ( S  u.  { 0 } ) )
1211adantr 276 . . . . . . . . . . 11  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  ->  p : NN0 --> ( S  u.  { 0 } ) )
13 cnfldbas 14116 . . . . . . . . . . . . . 14  |-  CC  =  ( Base ` fld )
1413subrgss 13778 . . . . . . . . . . . . 13  |-  ( S  e.  (SubRing ` fld )  ->  S  C_  CC )
15 0cn 8018 . . . . . . . . . . . . . 14  |-  0  e.  CC
16 snssi 3766 . . . . . . . . . . . . . 14  |-  ( 0  e.  CC  ->  { 0 }  C_  CC )
1715, 16mp1i 10 . . . . . . . . . . . . 13  |-  ( S  e.  (SubRing ` fld )  ->  { 0 }  C_  CC )
1814, 17unssd 3339 . . . . . . . . . . . 12  |-  ( S  e.  (SubRing ` fld )  ->  ( S  u.  { 0 } )  C_  CC )
1918ad3antrrr 492 . . . . . . . . . . 11  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
( S  u.  {
0 } )  C_  CC )
2012, 19fssd 5420 . . . . . . . . . 10  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  ->  p : NN0 --> CC )
2120adantr 276 . . . . . . . . 9  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  a  e.  CC )  ->  p : NN0 --> CC )
22 simplrl 535 . . . . . . . . 9  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  a  e.  CC )  ->  ( p " ( ZZ>=
`  ( d  +  1 ) ) )  =  { 0 } )
23 simplrr 536 . . . . . . . . 9  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  a  e.  CC )  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d
) ( ( p `
 k )  x.  ( z ^ k
) ) ) )
24 nn0z 9346 . . . . . . . . . . . . 13  |-  ( d  e.  NN0  ->  d  e.  ZZ )
2524uzidd 9616 . . . . . . . . . . . 12  |-  ( d  e.  NN0  ->  d  e.  ( ZZ>= `  d )
)
26 peano2uz 9657 . . . . . . . . . . . 12  |-  ( d  e.  ( ZZ>= `  d
)  ->  ( d  +  1 )  e.  ( ZZ>= `  d )
)
2725, 26syl 14 . . . . . . . . . . 11  |-  ( d  e.  NN0  ->  ( d  +  1 )  e.  ( ZZ>= `  d )
)
288, 27syl 14 . . . . . . . . . 10  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
( d  +  1 )  e.  ( ZZ>= `  d ) )
2928adantr 276 . . . . . . . . 9  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  a  e.  CC )  ->  ( d  +  1 )  e.  ( ZZ>= `  d ) )
30 simpr 110 . . . . . . . . 9  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  a  e.  CC )  ->  a  e.  CC )
319, 21, 22, 23, 29, 30plycoeid3 14993 . . . . . . . 8  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  a  e.  CC )  ->  ( F `  a
)  =  sum_ b  e.  ( 0 ... (
d  +  1 ) ) ( ( p `
 b )  x.  ( a ^ b
) ) )
3231mpteq2dva 4123 . . . . . . 7  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
( a  e.  CC  |->  ( F `  a ) )  =  ( a  e.  CC  |->  sum_ b  e.  ( 0 ... (
d  +  1 ) ) ( ( p `
 b )  x.  ( a ^ b
) ) ) )
337, 32eqtrd 2229 . . . . . 6  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  ->  F  =  ( a  e.  CC  |->  sum_ b  e.  ( 0 ... ( d  +  1 ) ) ( ( p `  b )  x.  (
a ^ b ) ) ) )
348nn0cnd 9304 . . . . . . . . . . 11  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
d  e.  CC )
35 1cnd 8042 . . . . . . . . . . 11  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
1  e.  CC )
3634, 35pncand 8338 . . . . . . . . . 10  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
( ( d  +  1 )  -  1 )  =  d )
3736eqcomd 2202 . . . . . . . . 9  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
d  =  ( ( d  +  1 )  -  1 ) )
3837oveq2d 5938 . . . . . . . 8  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
( 0 ... d
)  =  ( 0 ... ( ( d  +  1 )  - 
1 ) ) )
3938sumeq1d 11531 . . . . . . 7  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  ->  sum_ b  e.  ( 0 ... d ) ( ( ( c  e. 
NN0  |->  ( ( c  +  1 )  x.  ( p `  (
c  +  1 ) ) ) ) `  b )  x.  (
a ^ b ) )  =  sum_ b  e.  ( 0 ... (
( d  +  1 )  -  1 ) ) ( ( ( c  e.  NN0  |->  ( ( c  +  1 )  x.  ( p `  ( c  +  1 ) ) ) ) `
 b )  x.  ( a ^ b
) ) )
4039mpteq2dv 4124 . . . . . 6  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
( a  e.  CC  |->  sum_ b  e.  ( 0 ... d ) ( ( ( c  e. 
NN0  |->  ( ( c  +  1 )  x.  ( p `  (
c  +  1 ) ) ) ) `  b )  x.  (
a ^ b ) ) )  =  ( a  e.  CC  |->  sum_ b  e.  ( 0 ... ( ( d  +  1 )  - 
1 ) ) ( ( ( c  e. 
NN0  |->  ( ( c  +  1 )  x.  ( p `  (
c  +  1 ) ) ) ) `  b )  x.  (
a ^ b ) ) ) )
41 oveq1 5929 . . . . . . . 8  |-  ( c  =  b  ->  (
c  +  1 )  =  ( b  +  1 ) )
42 fvoveq1 5945 . . . . . . . 8  |-  ( c  =  b  ->  (
p `  ( c  +  1 ) )  =  ( p `  ( b  +  1 ) ) )
4341, 42oveq12d 5940 . . . . . . 7  |-  ( c  =  b  ->  (
( c  +  1 )  x.  ( p `
 ( c  +  1 ) ) )  =  ( ( b  +  1 )  x.  ( p `  (
b  +  1 ) ) ) )
4443cbvmptv 4129 . . . . . 6  |-  ( c  e.  NN0  |->  ( ( c  +  1 )  x.  ( p `  ( c  +  1 ) ) ) )  =  ( b  e. 
NN0  |->  ( ( b  +  1 )  x.  ( p `  (
b  +  1 ) ) ) )
45 peano2nn0 9289 . . . . . . 7  |-  ( d  e.  NN0  ->  ( d  +  1 )  e. 
NN0 )
468, 45syl 14 . . . . . 6  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
( d  +  1 )  e.  NN0 )
4733, 40, 20, 44, 46dvply1 15001 . . . . 5  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
( CC  _D  F
)  =  ( a  e.  CC  |->  sum_ b  e.  ( 0 ... d
) ( ( ( c  e.  NN0  |->  ( ( c  +  1 )  x.  ( p `  ( c  +  1 ) ) ) ) `
 b )  x.  ( a ^ b
) ) ) )
4814ad3antrrr 492 . . . . . 6  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  ->  S  C_  CC )
49 elfznn0 10189 . . . . . . 7  |-  ( b  e.  ( 0 ... d )  ->  b  e.  NN0 )
50 peano2nn0 9289 . . . . . . . . . . . . 13  |-  ( c  e.  NN0  ->  ( c  +  1 )  e. 
NN0 )
5150adantl 277 . . . . . . . . . . . 12  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  c  e.  NN0 )  -> 
( c  +  1 )  e.  NN0 )
5251nn0cnd 9304 . . . . . . . . . . 11  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  c  e.  NN0 )  -> 
( c  +  1 )  e.  CC )
5320adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  c  e.  NN0 )  ->  p : NN0 --> CC )
5453, 51ffvelcdmd 5698 . . . . . . . . . . 11  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  c  e.  NN0 )  -> 
( p `  (
c  +  1 ) )  e.  CC )
5552, 54mulcld 8047 . . . . . . . . . . 11  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  c  e.  NN0 )  -> 
( ( c  +  1 )  x.  (
p `  ( c  +  1 ) ) )  e.  CC )
56 oveq1 5929 . . . . . . . . . . . 12  |-  ( u  =  ( c  +  1 )  ->  (
u  x.  v )  =  ( ( c  +  1 )  x.  v ) )
57 oveq2 5930 . . . . . . . . . . . 12  |-  ( v  =  ( p `  ( c  +  1 ) )  ->  (
( c  +  1 )  x.  v )  =  ( ( c  +  1 )  x.  ( p `  (
c  +  1 ) ) ) )
58 eqid 2196 . . . . . . . . . . . 12  |-  ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) )  =  ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) )
5956, 57, 58ovmpog 6057 . . . . . . . . . . 11  |-  ( ( ( c  +  1 )  e.  CC  /\  ( p `  (
c  +  1 ) )  e.  CC  /\  ( ( c  +  1 )  x.  (
p `  ( c  +  1 ) ) )  e.  CC )  ->  ( ( c  +  1 ) ( u  e.  CC , 
v  e.  CC  |->  ( u  x.  v ) ) ( p `  ( c  +  1 ) ) )  =  ( ( c  +  1 )  x.  (
p `  ( c  +  1 ) ) ) )
6052, 54, 55, 59syl3anc 1249 . . . . . . . . . 10  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  c  e.  NN0 )  -> 
( ( c  +  1 ) ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) ) ( p `  (
c  +  1 ) ) )  =  ( ( c  +  1 )  x.  ( p `
 ( c  +  1 ) ) ) )
61 simp-4l 541 . . . . . . . . . . 11  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  c  e.  NN0 )  ->  S  e.  (SubRing ` fld ) )
62 zsssubrg 14141 . . . . . . . . . . . . 13  |-  ( S  e.  (SubRing ` fld )  ->  ZZ  C_  S )
6362ad4antr 494 . . . . . . . . . . . 12  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  c  e.  NN0 )  ->  ZZ  C_  S )
6451nn0zd 9446 . . . . . . . . . . . 12  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  c  e.  NN0 )  -> 
( c  +  1 )  e.  ZZ )
6563, 64sseldd 3184 . . . . . . . . . . 11  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  c  e.  NN0 )  -> 
( c  +  1 )  e.  S )
6612adantr 276 . . . . . . . . . . . . 13  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  c  e.  NN0 )  ->  p : NN0 --> ( S  u.  { 0 } ) )
67 subrgsubg 13783 . . . . . . . . . . . . . . . . . 18  |-  ( S  e.  (SubRing ` fld )  ->  S  e.  (SubGrp ` fld ) )
68 cnfld0 14127 . . . . . . . . . . . . . . . . . . 19  |-  0  =  ( 0g ` fld )
6968subg0cl 13312 . . . . . . . . . . . . . . . . . 18  |-  ( S  e.  (SubGrp ` fld )  ->  0  e.  S )
7067, 69syl 14 . . . . . . . . . . . . . . . . 17  |-  ( S  e.  (SubRing ` fld )  ->  0  e.  S )
7170ad4antr 494 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  c  e.  NN0 )  -> 
0  e.  S )
7271snssd 3767 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  c  e.  NN0 )  ->  { 0 }  C_  S )
73 ssequn2 3336 . . . . . . . . . . . . . . 15  |-  ( { 0 }  C_  S  <->  ( S  u.  { 0 } )  =  S )
7472, 73sylib 122 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  c  e.  NN0 )  -> 
( S  u.  {
0 } )  =  S )
7574feq3d 5396 . . . . . . . . . . . . 13  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  c  e.  NN0 )  -> 
( p : NN0 --> ( S  u.  { 0 } )  <->  p : NN0
--> S ) )
7666, 75mpbid 147 . . . . . . . . . . . 12  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  c  e.  NN0 )  ->  p : NN0 --> S )
7776, 51ffvelcdmd 5698 . . . . . . . . . . 11  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  c  e.  NN0 )  -> 
( p `  (
c  +  1 ) )  e.  S )
78 mpocnfldmul 14119 . . . . . . . . . . . 12  |-  ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) )  =  ( .r ` fld )
7978subrgmcl 13789 . . . . . . . . . . 11  |-  ( ( S  e.  (SubRing ` fld )  /\  (
c  +  1 )  e.  S  /\  (
p `  ( c  +  1 ) )  e.  S )  -> 
( ( c  +  1 ) ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) ) ( p `  (
c  +  1 ) ) )  e.  S
)
8061, 65, 77, 79syl3anc 1249 . . . . . . . . . 10  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  c  e.  NN0 )  -> 
( ( c  +  1 ) ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) ) ( p `  (
c  +  1 ) ) )  e.  S
)
8160, 80eqeltrrd 2274 . . . . . . . . 9  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  c  e.  NN0 )  -> 
( ( c  +  1 )  x.  (
p `  ( c  +  1 ) ) )  e.  S )
8281fmpttd 5717 . . . . . . . 8  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
( c  e.  NN0  |->  ( ( c  +  1 )  x.  (
p `  ( c  +  1 ) ) ) ) : NN0 --> S )
8382ffvelcdmda 5697 . . . . . . 7  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  b  e.  NN0 )  -> 
( ( c  e. 
NN0  |->  ( ( c  +  1 )  x.  ( p `  (
c  +  1 ) ) ) ) `  b )  e.  S
)
8449, 83sylan2 286 . . . . . 6  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  b  e.  ( 0 ... d ) )  ->  ( ( c  e.  NN0  |->  ( ( c  +  1 )  x.  ( p `  ( c  +  1 ) ) ) ) `
 b )  e.  S )
8548, 8, 84elplyd 14977 . . . . 5  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
( a  e.  CC  |->  sum_ b  e.  ( 0 ... d ) ( ( ( c  e. 
NN0  |->  ( ( c  +  1 )  x.  ( p `  (
c  +  1 ) ) ) ) `  b )  x.  (
a ^ b ) ) )  e.  (Poly `  S ) )
8647, 85eqeltrd 2273 . . . 4  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
( CC  _D  F
)  e.  (Poly `  S ) )
8786ex 115 . . 3  |-  ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S ) )  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  -> 
( ( ( p
" ( ZZ>= `  (
d  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k )  x.  (
z ^ k ) ) ) )  -> 
( CC  _D  F
)  e.  (Poly `  S ) ) )
8887rexlimdvva 2622 . 2  |-  ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  ->  ( E. d  e.  NN0  E. p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( p
" ( ZZ>= `  (
d  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k )  x.  (
z ^ k ) ) ) )  -> 
( CC  _D  F
)  e.  (Poly `  S ) ) )
893, 88mpd 13 1  |-  ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  ->  ( CC  _D  F )  e.  (Poly `  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   E.wrex 2476    u. cun 3155    C_ wss 3157   {csn 3622    |-> cmpt 4094   "cima 4666   -->wf 5254   ` cfv 5258  (class class class)co 5922    e. cmpo 5924    ^m cmap 6707   CCcc 7877   0cc0 7879   1c1 7880    + caddc 7882    x. cmul 7884    - cmin 8197   NN0cn0 9249   ZZcz 9326   ZZ>=cuz 9601   ...cfz 10083   ^cexp 10630   sum_csu 11518  SubGrpcsubg 13297  SubRingcsubrg 13773  ℂfldccnfld 14112    _D cdv 14891  Polycply 14964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999  ax-addf 8001  ax-mulf 8002
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-tp 3630  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-of 6135  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-oadd 6478  df-er 6592  df-map 6709  df-pm 6710  df-en 6800  df-dom 6801  df-fin 6802  df-sup 7050  df-inf 7051  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-5 9052  df-6 9053  df-7 9054  df-8 9055  df-9 9056  df-n0 9250  df-z 9327  df-dec 9458  df-uz 9602  df-q 9694  df-rp 9729  df-xneg 9847  df-xadd 9848  df-fz 10084  df-fzo 10218  df-seqfrec 10540  df-exp 10631  df-ihash 10868  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444  df-sumdc 11519  df-struct 12680  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-iress 12686  df-plusg 12768  df-mulr 12769  df-starv 12770  df-tset 12774  df-ple 12775  df-ds 12777  df-unif 12778  df-rest 12912  df-topn 12913  df-0g 12929  df-topgen 12931  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-minusg 13136  df-mulg 13250  df-subg 13300  df-cmn 13416  df-mgp 13477  df-ur 13516  df-ring 13554  df-cring 13555  df-subrg 13775  df-psmet 14099  df-xmet 14100  df-met 14101  df-bl 14102  df-mopn 14103  df-fg 14105  df-metu 14106  df-cnfld 14113  df-top 14234  df-topon 14247  df-topsp 14267  df-bases 14279  df-ntr 14332  df-cn 14424  df-cnp 14425  df-tx 14489  df-xms 14575  df-ms 14576  df-cncf 14807  df-limced 14892  df-dvap 14893  df-ply 14966
This theorem is referenced by:  dvply2  15003
  Copyright terms: Public domain W3C validator