ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvply2g Unicode version

Theorem dvply2g 15448
Description: The derivative of a polynomial with coefficients in a subring is a polynomial with coefficients in the same ring. (Contributed by Mario Carneiro, 1-Jan-2017.) (Revised by GG, 30-Apr-2025.)
Assertion
Ref Expression
dvply2g  |-  ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  ->  ( CC  _D  F )  e.  (Poly `  S ) )

Proof of Theorem dvply2g
Dummy variables  a  b  c  d  p  u  v  k  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elply2 15417 . . . 4  |-  ( F  e.  (Poly `  S
)  <->  ( S  C_  CC  /\  E. d  e. 
NN0  E. p  e.  ( ( S  u.  {
0 } )  ^m  NN0 ) ( ( p
" ( ZZ>= `  (
d  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k )  x.  (
z ^ k ) ) ) ) ) )
21simprbi 275 . . 3  |-  ( F  e.  (Poly `  S
)  ->  E. d  e.  NN0  E. p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( p
" ( ZZ>= `  (
d  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k )  x.  (
z ^ k ) ) ) ) )
32adantl 277 . 2  |-  ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  ->  E. d  e.  NN0  E. p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( p
" ( ZZ>= `  (
d  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k )  x.  (
z ^ k ) ) ) ) )
4 plyf 15419 . . . . . . . . . 10  |-  ( F  e.  (Poly `  S
)  ->  F : CC
--> CC )
54adantl 277 . . . . . . . . 9  |-  ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  ->  F : CC
--> CC )
65feqmptd 5689 . . . . . . . 8  |-  ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  ->  F  =  ( a  e.  CC  |->  ( F `  a ) ) )
76ad2antrr 488 . . . . . . 7  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  ->  F  =  ( a  e.  CC  |->  ( F `  a ) ) )
8 simplrl 535 . . . . . . . . . 10  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
d  e.  NN0 )
98adantr 276 . . . . . . . . 9  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  a  e.  CC )  ->  d  e.  NN0 )
10 elmapi 6825 . . . . . . . . . . . . 13  |-  ( p  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  ->  p : NN0 --> ( S  u.  { 0 } ) )
1110ad2antll 491 . . . . . . . . . . . 12  |-  ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S ) )  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  ->  p : NN0 --> ( S  u.  { 0 } ) )
1211adantr 276 . . . . . . . . . . 11  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  ->  p : NN0 --> ( S  u.  { 0 } ) )
13 cnfldbas 14532 . . . . . . . . . . . . . 14  |-  CC  =  ( Base ` fld )
1413subrgss 14194 . . . . . . . . . . . . 13  |-  ( S  e.  (SubRing ` fld )  ->  S  C_  CC )
15 0cn 8146 . . . . . . . . . . . . . 14  |-  0  e.  CC
16 snssi 3812 . . . . . . . . . . . . . 14  |-  ( 0  e.  CC  ->  { 0 }  C_  CC )
1715, 16mp1i 10 . . . . . . . . . . . . 13  |-  ( S  e.  (SubRing ` fld )  ->  { 0 }  C_  CC )
1814, 17unssd 3380 . . . . . . . . . . . 12  |-  ( S  e.  (SubRing ` fld )  ->  ( S  u.  { 0 } )  C_  CC )
1918ad3antrrr 492 . . . . . . . . . . 11  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
( S  u.  {
0 } )  C_  CC )
2012, 19fssd 5486 . . . . . . . . . 10  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  ->  p : NN0 --> CC )
2120adantr 276 . . . . . . . . 9  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  a  e.  CC )  ->  p : NN0 --> CC )
22 simplrl 535 . . . . . . . . 9  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  a  e.  CC )  ->  ( p " ( ZZ>=
`  ( d  +  1 ) ) )  =  { 0 } )
23 simplrr 536 . . . . . . . . 9  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  a  e.  CC )  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d
) ( ( p `
 k )  x.  ( z ^ k
) ) ) )
24 nn0z 9474 . . . . . . . . . . . . 13  |-  ( d  e.  NN0  ->  d  e.  ZZ )
2524uzidd 9745 . . . . . . . . . . . 12  |-  ( d  e.  NN0  ->  d  e.  ( ZZ>= `  d )
)
26 peano2uz 9786 . . . . . . . . . . . 12  |-  ( d  e.  ( ZZ>= `  d
)  ->  ( d  +  1 )  e.  ( ZZ>= `  d )
)
2725, 26syl 14 . . . . . . . . . . 11  |-  ( d  e.  NN0  ->  ( d  +  1 )  e.  ( ZZ>= `  d )
)
288, 27syl 14 . . . . . . . . . 10  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
( d  +  1 )  e.  ( ZZ>= `  d ) )
2928adantr 276 . . . . . . . . 9  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  a  e.  CC )  ->  ( d  +  1 )  e.  ( ZZ>= `  d ) )
30 simpr 110 . . . . . . . . 9  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  a  e.  CC )  ->  a  e.  CC )
319, 21, 22, 23, 29, 30plycoeid3 15439 . . . . . . . 8  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  a  e.  CC )  ->  ( F `  a
)  =  sum_ b  e.  ( 0 ... (
d  +  1 ) ) ( ( p `
 b )  x.  ( a ^ b
) ) )
3231mpteq2dva 4174 . . . . . . 7  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
( a  e.  CC  |->  ( F `  a ) )  =  ( a  e.  CC  |->  sum_ b  e.  ( 0 ... (
d  +  1 ) ) ( ( p `
 b )  x.  ( a ^ b
) ) ) )
337, 32eqtrd 2262 . . . . . 6  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  ->  F  =  ( a  e.  CC  |->  sum_ b  e.  ( 0 ... ( d  +  1 ) ) ( ( p `  b )  x.  (
a ^ b ) ) ) )
348nn0cnd 9432 . . . . . . . . . . 11  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
d  e.  CC )
35 1cnd 8170 . . . . . . . . . . 11  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
1  e.  CC )
3634, 35pncand 8466 . . . . . . . . . 10  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
( ( d  +  1 )  -  1 )  =  d )
3736eqcomd 2235 . . . . . . . . 9  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
d  =  ( ( d  +  1 )  -  1 ) )
3837oveq2d 6023 . . . . . . . 8  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
( 0 ... d
)  =  ( 0 ... ( ( d  +  1 )  - 
1 ) ) )
3938sumeq1d 11885 . . . . . . 7  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  ->  sum_ b  e.  ( 0 ... d ) ( ( ( c  e. 
NN0  |->  ( ( c  +  1 )  x.  ( p `  (
c  +  1 ) ) ) ) `  b )  x.  (
a ^ b ) )  =  sum_ b  e.  ( 0 ... (
( d  +  1 )  -  1 ) ) ( ( ( c  e.  NN0  |->  ( ( c  +  1 )  x.  ( p `  ( c  +  1 ) ) ) ) `
 b )  x.  ( a ^ b
) ) )
4039mpteq2dv 4175 . . . . . 6  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
( a  e.  CC  |->  sum_ b  e.  ( 0 ... d ) ( ( ( c  e. 
NN0  |->  ( ( c  +  1 )  x.  ( p `  (
c  +  1 ) ) ) ) `  b )  x.  (
a ^ b ) ) )  =  ( a  e.  CC  |->  sum_ b  e.  ( 0 ... ( ( d  +  1 )  - 
1 ) ) ( ( ( c  e. 
NN0  |->  ( ( c  +  1 )  x.  ( p `  (
c  +  1 ) ) ) ) `  b )  x.  (
a ^ b ) ) ) )
41 oveq1 6014 . . . . . . . 8  |-  ( c  =  b  ->  (
c  +  1 )  =  ( b  +  1 ) )
42 fvoveq1 6030 . . . . . . . 8  |-  ( c  =  b  ->  (
p `  ( c  +  1 ) )  =  ( p `  ( b  +  1 ) ) )
4341, 42oveq12d 6025 . . . . . . 7  |-  ( c  =  b  ->  (
( c  +  1 )  x.  ( p `
 ( c  +  1 ) ) )  =  ( ( b  +  1 )  x.  ( p `  (
b  +  1 ) ) ) )
4443cbvmptv 4180 . . . . . 6  |-  ( c  e.  NN0  |->  ( ( c  +  1 )  x.  ( p `  ( c  +  1 ) ) ) )  =  ( b  e. 
NN0  |->  ( ( b  +  1 )  x.  ( p `  (
b  +  1 ) ) ) )
45 peano2nn0 9417 . . . . . . 7  |-  ( d  e.  NN0  ->  ( d  +  1 )  e. 
NN0 )
468, 45syl 14 . . . . . 6  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
( d  +  1 )  e.  NN0 )
4733, 40, 20, 44, 46dvply1 15447 . . . . 5  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
( CC  _D  F
)  =  ( a  e.  CC  |->  sum_ b  e.  ( 0 ... d
) ( ( ( c  e.  NN0  |->  ( ( c  +  1 )  x.  ( p `  ( c  +  1 ) ) ) ) `
 b )  x.  ( a ^ b
) ) ) )
4814ad3antrrr 492 . . . . . 6  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  ->  S  C_  CC )
49 elfznn0 10318 . . . . . . 7  |-  ( b  e.  ( 0 ... d )  ->  b  e.  NN0 )
50 peano2nn0 9417 . . . . . . . . . . . . 13  |-  ( c  e.  NN0  ->  ( c  +  1 )  e. 
NN0 )
5150adantl 277 . . . . . . . . . . . 12  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  c  e.  NN0 )  -> 
( c  +  1 )  e.  NN0 )
5251nn0cnd 9432 . . . . . . . . . . 11  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  c  e.  NN0 )  -> 
( c  +  1 )  e.  CC )
5320adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  c  e.  NN0 )  ->  p : NN0 --> CC )
5453, 51ffvelcdmd 5773 . . . . . . . . . . 11  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  c  e.  NN0 )  -> 
( p `  (
c  +  1 ) )  e.  CC )
5552, 54mulcld 8175 . . . . . . . . . . 11  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  c  e.  NN0 )  -> 
( ( c  +  1 )  x.  (
p `  ( c  +  1 ) ) )  e.  CC )
56 oveq1 6014 . . . . . . . . . . . 12  |-  ( u  =  ( c  +  1 )  ->  (
u  x.  v )  =  ( ( c  +  1 )  x.  v ) )
57 oveq2 6015 . . . . . . . . . . . 12  |-  ( v  =  ( p `  ( c  +  1 ) )  ->  (
( c  +  1 )  x.  v )  =  ( ( c  +  1 )  x.  ( p `  (
c  +  1 ) ) ) )
58 eqid 2229 . . . . . . . . . . . 12  |-  ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) )  =  ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) )
5956, 57, 58ovmpog 6145 . . . . . . . . . . 11  |-  ( ( ( c  +  1 )  e.  CC  /\  ( p `  (
c  +  1 ) )  e.  CC  /\  ( ( c  +  1 )  x.  (
p `  ( c  +  1 ) ) )  e.  CC )  ->  ( ( c  +  1 ) ( u  e.  CC , 
v  e.  CC  |->  ( u  x.  v ) ) ( p `  ( c  +  1 ) ) )  =  ( ( c  +  1 )  x.  (
p `  ( c  +  1 ) ) ) )
6052, 54, 55, 59syl3anc 1271 . . . . . . . . . 10  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  c  e.  NN0 )  -> 
( ( c  +  1 ) ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) ) ( p `  (
c  +  1 ) ) )  =  ( ( c  +  1 )  x.  ( p `
 ( c  +  1 ) ) ) )
61 simp-4l 541 . . . . . . . . . . 11  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  c  e.  NN0 )  ->  S  e.  (SubRing ` fld ) )
62 zsssubrg 14557 . . . . . . . . . . . . 13  |-  ( S  e.  (SubRing ` fld )  ->  ZZ  C_  S )
6362ad4antr 494 . . . . . . . . . . . 12  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  c  e.  NN0 )  ->  ZZ  C_  S )
6451nn0zd 9575 . . . . . . . . . . . 12  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  c  e.  NN0 )  -> 
( c  +  1 )  e.  ZZ )
6563, 64sseldd 3225 . . . . . . . . . . 11  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  c  e.  NN0 )  -> 
( c  +  1 )  e.  S )
6612adantr 276 . . . . . . . . . . . . 13  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  c  e.  NN0 )  ->  p : NN0 --> ( S  u.  { 0 } ) )
67 subrgsubg 14199 . . . . . . . . . . . . . . . . . 18  |-  ( S  e.  (SubRing ` fld )  ->  S  e.  (SubGrp ` fld ) )
68 cnfld0 14543 . . . . . . . . . . . . . . . . . . 19  |-  0  =  ( 0g ` fld )
6968subg0cl 13727 . . . . . . . . . . . . . . . . . 18  |-  ( S  e.  (SubGrp ` fld )  ->  0  e.  S )
7067, 69syl 14 . . . . . . . . . . . . . . . . 17  |-  ( S  e.  (SubRing ` fld )  ->  0  e.  S )
7170ad4antr 494 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  c  e.  NN0 )  -> 
0  e.  S )
7271snssd 3813 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  c  e.  NN0 )  ->  { 0 }  C_  S )
73 ssequn2 3377 . . . . . . . . . . . . . . 15  |-  ( { 0 }  C_  S  <->  ( S  u.  { 0 } )  =  S )
7472, 73sylib 122 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  c  e.  NN0 )  -> 
( S  u.  {
0 } )  =  S )
7574feq3d 5462 . . . . . . . . . . . . 13  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  c  e.  NN0 )  -> 
( p : NN0 --> ( S  u.  { 0 } )  <->  p : NN0
--> S ) )
7666, 75mpbid 147 . . . . . . . . . . . 12  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  c  e.  NN0 )  ->  p : NN0 --> S )
7776, 51ffvelcdmd 5773 . . . . . . . . . . 11  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  c  e.  NN0 )  -> 
( p `  (
c  +  1 ) )  e.  S )
78 mpocnfldmul 14535 . . . . . . . . . . . 12  |-  ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) )  =  ( .r ` fld )
7978subrgmcl 14205 . . . . . . . . . . 11  |-  ( ( S  e.  (SubRing ` fld )  /\  (
c  +  1 )  e.  S  /\  (
p `  ( c  +  1 ) )  e.  S )  -> 
( ( c  +  1 ) ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) ) ( p `  (
c  +  1 ) ) )  e.  S
)
8061, 65, 77, 79syl3anc 1271 . . . . . . . . . 10  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  c  e.  NN0 )  -> 
( ( c  +  1 ) ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) ) ( p `  (
c  +  1 ) ) )  e.  S
)
8160, 80eqeltrrd 2307 . . . . . . . . 9  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  c  e.  NN0 )  -> 
( ( c  +  1 )  x.  (
p `  ( c  +  1 ) ) )  e.  S )
8281fmpttd 5792 . . . . . . . 8  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
( c  e.  NN0  |->  ( ( c  +  1 )  x.  (
p `  ( c  +  1 ) ) ) ) : NN0 --> S )
8382ffvelcdmda 5772 . . . . . . 7  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  b  e.  NN0 )  -> 
( ( c  e. 
NN0  |->  ( ( c  +  1 )  x.  ( p `  (
c  +  1 ) ) ) ) `  b )  e.  S
)
8449, 83sylan2 286 . . . . . 6  |-  ( ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  /\  b  e.  ( 0 ... d ) )  ->  ( ( c  e.  NN0  |->  ( ( c  +  1 )  x.  ( p `  ( c  +  1 ) ) ) ) `
 b )  e.  S )
8548, 8, 84elplyd 15423 . . . . 5  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
( a  e.  CC  |->  sum_ b  e.  ( 0 ... d ) ( ( ( c  e. 
NN0  |->  ( ( c  +  1 )  x.  ( p `  (
c  +  1 ) ) ) ) `  b )  x.  (
a ^ b ) ) )  e.  (Poly `  S ) )
8647, 85eqeltrd 2306 . . . 4  |-  ( ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( p "
( ZZ>= `  ( d  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
( CC  _D  F
)  e.  (Poly `  S ) )
8786ex 115 . . 3  |-  ( ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S ) )  /\  ( d  e.  NN0  /\  p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  -> 
( ( ( p
" ( ZZ>= `  (
d  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k )  x.  (
z ^ k ) ) ) )  -> 
( CC  _D  F
)  e.  (Poly `  S ) ) )
8887rexlimdvva 2656 . 2  |-  ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  ->  ( E. d  e.  NN0  E. p  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( p
" ( ZZ>= `  (
d  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( p `  k )  x.  (
z ^ k ) ) ) )  -> 
( CC  _D  F
)  e.  (Poly `  S ) ) )
893, 88mpd 13 1  |-  ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S )
)  ->  ( CC  _D  F )  e.  (Poly `  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   E.wrex 2509    u. cun 3195    C_ wss 3197   {csn 3666    |-> cmpt 4145   "cima 4722   -->wf 5314   ` cfv 5318  (class class class)co 6007    e. cmpo 6009    ^m cmap 6803   CCcc 8005   0cc0 8007   1c1 8008    + caddc 8010    x. cmul 8012    - cmin 8325   NN0cn0 9377   ZZcz 9454   ZZ>=cuz 9730   ...cfz 10212   ^cexp 10768   sum_csu 11872  SubGrpcsubg 13712  SubRingcsubrg 14189  ℂfldccnfld 14528    _D cdv 15337  Polycply 15410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126  ax-caucvg 8127  ax-addf 8129  ax-mulf 8130
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-tp 3674  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-of 6224  df-1st 6292  df-2nd 6293  df-recs 6457  df-irdg 6522  df-frec 6543  df-1o 6568  df-oadd 6572  df-er 6688  df-map 6805  df-pm 6806  df-en 6896  df-dom 6897  df-fin 6898  df-sup 7159  df-inf 7160  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-5 9180  df-6 9181  df-7 9182  df-8 9183  df-9 9184  df-n0 9378  df-z 9455  df-dec 9587  df-uz 9731  df-q 9823  df-rp 9858  df-xneg 9976  df-xadd 9977  df-fz 10213  df-fzo 10347  df-seqfrec 10678  df-exp 10769  df-ihash 11006  df-cj 11361  df-re 11362  df-im 11363  df-rsqrt 11517  df-abs 11518  df-clim 11798  df-sumdc 11873  df-struct 13042  df-ndx 13043  df-slot 13044  df-base 13046  df-sets 13047  df-iress 13048  df-plusg 13131  df-mulr 13132  df-starv 13133  df-tset 13137  df-ple 13138  df-ds 13140  df-unif 13141  df-rest 13282  df-topn 13283  df-0g 13299  df-topgen 13301  df-mgm 13397  df-sgrp 13443  df-mnd 13458  df-grp 13544  df-minusg 13545  df-mulg 13665  df-subg 13715  df-cmn 13831  df-mgp 13892  df-ur 13931  df-ring 13969  df-cring 13970  df-subrg 14191  df-psmet 14515  df-xmet 14516  df-met 14517  df-bl 14518  df-mopn 14519  df-fg 14521  df-metu 14522  df-cnfld 14529  df-top 14680  df-topon 14693  df-topsp 14713  df-bases 14725  df-ntr 14778  df-cn 14870  df-cnp 14871  df-tx 14935  df-xms 15021  df-ms 15022  df-cncf 15253  df-limced 15338  df-dvap 15339  df-ply 15412
This theorem is referenced by:  dvply2  15449
  Copyright terms: Public domain W3C validator