ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fztp Unicode version

Theorem fztp 10202
Description: A finite interval of integers with three elements. (Contributed by NM, 13-Sep-2011.) (Revised by Mario Carneiro, 7-Mar-2014.)
Assertion
Ref Expression
fztp  |-  ( M  e.  ZZ  ->  ( M ... ( M  + 
2 ) )  =  { M ,  ( M  +  1 ) ,  ( M  + 
2 ) } )

Proof of Theorem fztp
StepHypRef Expression
1 uzid 9664 . . 3  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
2 peano2uz 9706 . . 3  |-  ( M  e.  ( ZZ>= `  M
)  ->  ( M  +  1 )  e.  ( ZZ>= `  M )
)
3 fzsuc 10193 . . 3  |-  ( ( M  +  1 )  e.  ( ZZ>= `  M
)  ->  ( M ... ( ( M  + 
1 )  +  1 ) )  =  ( ( M ... ( M  +  1 ) )  u.  { ( ( M  +  1 )  +  1 ) } ) )
41, 2, 33syl 17 . 2  |-  ( M  e.  ZZ  ->  ( M ... ( ( M  +  1 )  +  1 ) )  =  ( ( M ... ( M  +  1
) )  u.  {
( ( M  + 
1 )  +  1 ) } ) )
5 zcn 9379 . . . . 5  |-  ( M  e.  ZZ  ->  M  e.  CC )
6 ax-1cn 8020 . . . . . 6  |-  1  e.  CC
7 addass 8057 . . . . . 6  |-  ( ( M  e.  CC  /\  1  e.  CC  /\  1  e.  CC )  ->  (
( M  +  1 )  +  1 )  =  ( M  +  ( 1  +  1 ) ) )
86, 6, 7mp3an23 1342 . . . . 5  |-  ( M  e.  CC  ->  (
( M  +  1 )  +  1 )  =  ( M  +  ( 1  +  1 ) ) )
95, 8syl 14 . . . 4  |-  ( M  e.  ZZ  ->  (
( M  +  1 )  +  1 )  =  ( M  +  ( 1  +  1 ) ) )
10 df-2 9097 . . . . 5  |-  2  =  ( 1  +  1 )
1110oveq2i 5957 . . . 4  |-  ( M  +  2 )  =  ( M  +  ( 1  +  1 ) )
129, 11eqtr4di 2256 . . 3  |-  ( M  e.  ZZ  ->  (
( M  +  1 )  +  1 )  =  ( M  + 
2 ) )
1312oveq2d 5962 . 2  |-  ( M  e.  ZZ  ->  ( M ... ( ( M  +  1 )  +  1 ) )  =  ( M ... ( M  +  2 ) ) )
14 fzpr 10201 . . . 4  |-  ( M  e.  ZZ  ->  ( M ... ( M  + 
1 ) )  =  { M ,  ( M  +  1 ) } )
1512sneqd 3646 . . . 4  |-  ( M  e.  ZZ  ->  { ( ( M  +  1 )  +  1 ) }  =  { ( M  +  2 ) } )
1614, 15uneq12d 3328 . . 3  |-  ( M  e.  ZZ  ->  (
( M ... ( M  +  1 ) )  u.  { ( ( M  +  1 )  +  1 ) } )  =  ( { M ,  ( M  +  1 ) }  u.  { ( M  +  2 ) } ) )
17 df-tp 3641 . . 3  |-  { M ,  ( M  + 
1 ) ,  ( M  +  2 ) }  =  ( { M ,  ( M  +  1 ) }  u.  { ( M  +  2 ) } )
1816, 17eqtr4di 2256 . 2  |-  ( M  e.  ZZ  ->  (
( M ... ( M  +  1 ) )  u.  { ( ( M  +  1 )  +  1 ) } )  =  { M ,  ( M  +  1 ) ,  ( M  +  2 ) } )
194, 13, 183eqtr3d 2246 1  |-  ( M  e.  ZZ  ->  ( M ... ( M  + 
2 ) )  =  { M ,  ( M  +  1 ) ,  ( M  + 
2 ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2176    u. cun 3164   {csn 3633   {cpr 3634   {ctp 3635   ` cfv 5272  (class class class)co 5946   CCcc 7925   1c1 7928    + caddc 7930   2c2 9089   ZZcz 9374   ZZ>=cuz 9650   ...cfz 10132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-addcom 8027  ax-addass 8029  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-0id 8035  ax-rnegex 8036  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-apti 8042  ax-pre-ltadd 8043
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-tp 3641  df-op 3642  df-uni 3851  df-int 3886  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-inn 9039  df-2 9097  df-n0 9298  df-z 9375  df-uz 9651  df-fz 10133
This theorem is referenced by:  fztpval  10207  fz0tp  10246  fz0to4untppr  10248  fzo0to3tp  10350
  Copyright terms: Public domain W3C validator