ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uspgrun Unicode version

Theorem uspgrun 15989
Description: The union  U of two simple pseudographs  G and  H with the same vertex set  V is a pseudograph with the vertex  V and the union  ( E  u.  F ) of the (indexed) edges. (Contributed by AV, 16-Oct-2020.)
Hypotheses
Ref Expression
uspgrun.g  |-  ( ph  ->  G  e. USPGraph )
uspgrun.h  |-  ( ph  ->  H  e. USPGraph )
uspgrun.e  |-  E  =  (iEdg `  G )
uspgrun.f  |-  F  =  (iEdg `  H )
uspgrun.vg  |-  V  =  (Vtx `  G )
uspgrun.vh  |-  ( ph  ->  (Vtx `  H )  =  V )
uspgrun.i  |-  ( ph  ->  ( dom  E  i^i  dom 
F )  =  (/) )
uspgrun.u  |-  ( ph  ->  U  e.  W )
uspgrun.v  |-  ( ph  ->  (Vtx `  U )  =  V )
uspgrun.un  |-  ( ph  ->  (iEdg `  U )  =  ( E  u.  F ) )
Assertion
Ref Expression
uspgrun  |-  ( ph  ->  U  e. UPGraph )

Proof of Theorem uspgrun
StepHypRef Expression
1 uspgrun.g . . 3  |-  ( ph  ->  G  e. USPGraph )
2 uspgrupgr 15979 . . 3  |-  ( G  e. USPGraph  ->  G  e. UPGraph )
31, 2syl 14 . 2  |-  ( ph  ->  G  e. UPGraph )
4 uspgrun.h . . 3  |-  ( ph  ->  H  e. USPGraph )
5 uspgrupgr 15979 . . 3  |-  ( H  e. USPGraph  ->  H  e. UPGraph )
64, 5syl 14 . 2  |-  ( ph  ->  H  e. UPGraph )
7 uspgrun.e . 2  |-  E  =  (iEdg `  G )
8 uspgrun.f . 2  |-  F  =  (iEdg `  H )
9 uspgrun.vg . 2  |-  V  =  (Vtx `  G )
10 uspgrun.vh . 2  |-  ( ph  ->  (Vtx `  H )  =  V )
11 uspgrun.i . 2  |-  ( ph  ->  ( dom  E  i^i  dom 
F )  =  (/) )
12 uspgrun.u . 2  |-  ( ph  ->  U  e.  W )
13 uspgrun.v . 2  |-  ( ph  ->  (Vtx `  U )  =  V )
14 uspgrun.un . 2  |-  ( ph  ->  (iEdg `  U )  =  ( E  u.  F ) )
153, 6, 7, 8, 9, 10, 11, 12, 13, 14upgrun 15924 1  |-  ( ph  ->  U  e. UPGraph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200    u. cun 3195    i^i cin 3196   (/)c0 3491   dom cdm 4719   ` cfv 5318  Vtxcvtx 15813  iEdgciedg 15814  UPGraphcupgr 15891  USPGraphcuspgr 15951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-sub 8319  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-5 9172  df-6 9173  df-7 9174  df-8 9175  df-9 9176  df-n0 9370  df-dec 9579  df-ndx 13035  df-slot 13036  df-base 13038  df-edgf 15806  df-vtx 15815  df-iedg 15816  df-upgren 15893  df-uspgren 15953
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator