ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmettri GIF version

Theorem xmettri 14959
Description: Triangle inequality for the distance function of a metric space. Definition 14-1.1(d) of [Gleason] p. 223. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xmettri ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) +𝑒 (𝐶𝐷𝐵)))

Proof of Theorem xmettri
StepHypRef Expression
1 simpl 109 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝐷 ∈ (∞Met‘𝑋))
2 simpr3 1008 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝐶𝑋)
3 simpr1 1006 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝐴𝑋)
4 simpr2 1007 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝐵𝑋)
5 xmettri2 14948 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐶𝑋𝐴𝑋𝐵𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵)))
61, 2, 3, 4, 5syl13anc 1252 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵)))
7 xmetsym 14955 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐶𝑋𝐴𝑋) → (𝐶𝐷𝐴) = (𝐴𝐷𝐶))
81, 2, 3, 7syl3anc 1250 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐶𝐷𝐴) = (𝐴𝐷𝐶))
98oveq1d 5982 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵)) = ((𝐴𝐷𝐶) +𝑒 (𝐶𝐷𝐵)))
106, 9breqtrd 4085 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) +𝑒 (𝐶𝐷𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981   = wceq 1373  wcel 2178   class class class wbr 4059  cfv 5290  (class class class)co 5967  cle 8143   +𝑒 cxad 9927  ∞Metcxmet 14413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1re 8054  ax-addrcl 8057  ax-0id 8068  ax-rnegex 8069  ax-pre-ltirr 8072  ax-pre-apti 8075
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-map 6760  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-xadd 9930  df-xmet 14421
This theorem is referenced by:  xmettri3  14961  xmetrtri  14963  xmeter  15023  xmstri  15059
  Copyright terms: Public domain W3C validator