![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0ne1 | GIF version |
Description: 0 ≠ 1 (common case). See aso 1ap0 8218. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
0ne1 | ⊢ 0 ≠ 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 7638 | . 2 ⊢ 0 ∈ ℝ | |
2 | 0lt1 7760 | . 2 ⊢ 0 < 1 | |
3 | 1, 2 | ltneii 7731 | 1 ⊢ 0 ≠ 1 |
Colors of variables: wff set class |
Syntax hints: ≠ wne 2267 0cc0 7500 1c1 7501 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 584 ax-in2 585 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-13 1459 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-sep 3986 ax-pow 4038 ax-pr 4069 ax-un 4293 ax-setind 4390 ax-cnex 7586 ax-resscn 7587 ax-1re 7589 ax-addrcl 7592 ax-0lt1 7601 ax-rnegex 7604 ax-pre-ltirr 7607 |
This theorem depends on definitions: df-bi 116 df-3an 932 df-tru 1302 df-fal 1305 df-nf 1405 df-sb 1704 df-eu 1963 df-mo 1964 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ne 2268 df-nel 2363 df-ral 2380 df-rex 2381 df-rab 2384 df-v 2643 df-dif 3023 df-un 3025 df-in 3027 df-ss 3034 df-pw 3459 df-sn 3480 df-pr 3481 df-op 3483 df-uni 3684 df-br 3876 df-opab 3930 df-xp 4483 df-pnf 7674 df-mnf 7675 df-ltxr 7677 |
This theorem is referenced by: 1ne0 8646 prhash2ex 10396 mod2eq1n2dvds 11371 bezoutr1 11514 |
Copyright terms: Public domain | W3C validator |