| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 0lt1 | GIF version | ||
| Description: 0 is less than 1. Theorem I.21 of [Apostol] p. 20. Part of definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 17-Jan-1997.) | 
| Ref | Expression | 
|---|---|
| 0lt1 | ⊢ 0 < 1 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ax-0lt1 7985 | . 2 ⊢ 0 <ℝ 1 | |
| 2 | 0re 8026 | . . 3 ⊢ 0 ∈ ℝ | |
| 3 | 1re 8025 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | ltxrlt 8092 | . . 3 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ) → (0 < 1 ↔ 0 <ℝ 1)) | |
| 5 | 2, 3, 4 | mp2an 426 | . 2 ⊢ (0 < 1 ↔ 0 <ℝ 1) | 
| 6 | 1, 5 | mpbir 146 | 1 ⊢ 0 < 1 | 
| Colors of variables: wff set class | 
| Syntax hints: ↔ wb 105 ∈ wcel 2167 class class class wbr 4033 ℝcr 7878 0cc0 7879 1c1 7880 <ℝ cltrr 7883 < clt 8061 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 ax-0lt1 7985 ax-rnegex 7988 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-xp 4669 df-pnf 8063 df-mnf 8064 df-ltxr 8066 | 
| This theorem is referenced by: ine0 8420 0le1 8508 inelr 8611 1ap0 8617 eqneg 8759 ltp1 8871 ltm1 8873 recgt0 8877 mulgt1 8890 reclt1 8923 recgt1 8924 recgt1i 8925 recp1lt1 8926 recreclt 8927 sup3exmid 8984 nnge1 9013 nngt0 9015 0nnn 9017 nnrecgt0 9028 0ne1 9057 2pos 9081 3pos 9084 4pos 9087 5pos 9090 6pos 9091 7pos 9092 8pos 9093 9pos 9094 neg1lt0 9098 halflt1 9208 nn0p1gt0 9278 elnnnn0c 9294 elnnz1 9349 recnz 9419 1rp 9732 divlt1lt 9799 divle1le 9800 ledivge1le 9801 nnledivrp 9841 fz10 10121 fzpreddisj 10146 elfz1b 10165 modqfrac 10429 expgt1 10669 ltexp2a 10683 leexp2a 10684 expnbnd 10755 expnlbnd 10756 expnlbnd2 10757 nn0ltexp2 10801 expcanlem 10807 expcan 10808 bcn1 10850 resqrexlem1arp 11170 mulcn2 11477 reccn2ap 11478 georeclim 11678 geoisumr 11683 cos1bnd 11924 sin01gt0 11927 sincos1sgn 11930 p1modz1 11959 nnoddm1d2 12075 dvdsnprmd 12293 divdenle 12365 znidomb 14214 mopnex 14741 ivthdichlem 14887 reeff1olem 15007 cos02pilt1 15087 rplogcl 15115 cxplt 15152 cxple 15153 ltexp2 15177 mersenne 15233 perfectlem2 15236 apdiff 15692 | 
| Copyright terms: Public domain | W3C validator |