Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0lt1 | GIF version |
Description: 0 is less than 1. Theorem I.21 of [Apostol] p. 20. Part of definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 17-Jan-1997.) |
Ref | Expression |
---|---|
0lt1 | ⊢ 0 < 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-0lt1 7880 | . 2 ⊢ 0 <ℝ 1 | |
2 | 0re 7920 | . . 3 ⊢ 0 ∈ ℝ | |
3 | 1re 7919 | . . 3 ⊢ 1 ∈ ℝ | |
4 | ltxrlt 7985 | . . 3 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ) → (0 < 1 ↔ 0 <ℝ 1)) | |
5 | 2, 3, 4 | mp2an 424 | . 2 ⊢ (0 < 1 ↔ 0 <ℝ 1) |
6 | 1, 5 | mpbir 145 | 1 ⊢ 0 < 1 |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∈ wcel 2141 class class class wbr 3989 ℝcr 7773 0cc0 7774 1c1 7775 <ℝ cltrr 7778 < clt 7954 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1re 7868 ax-addrcl 7871 ax-0lt1 7880 ax-rnegex 7883 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-xp 4617 df-pnf 7956 df-mnf 7957 df-ltxr 7959 |
This theorem is referenced by: ine0 8313 0le1 8400 inelr 8503 1ap0 8509 eqneg 8649 ltp1 8760 ltm1 8762 recgt0 8766 mulgt1 8779 reclt1 8812 recgt1 8813 recgt1i 8814 recp1lt1 8815 recreclt 8816 sup3exmid 8873 nnge1 8901 nngt0 8903 0nnn 8905 nnrecgt0 8916 0ne1 8945 2pos 8969 3pos 8972 4pos 8975 5pos 8978 6pos 8979 7pos 8980 8pos 8981 9pos 8982 neg1lt0 8986 halflt1 9095 nn0p1gt0 9164 elnnnn0c 9180 elnnz1 9235 recnz 9305 1rp 9614 divlt1lt 9681 divle1le 9682 ledivge1le 9683 nnledivrp 9723 fz10 10002 fzpreddisj 10027 elfz1b 10046 modqfrac 10293 expgt1 10514 ltexp2a 10528 leexp2a 10529 expnbnd 10599 expnlbnd 10600 expnlbnd2 10601 nn0ltexp2 10644 expcanlem 10649 expcan 10650 bcn1 10692 resqrexlem1arp 10969 mulcn2 11275 reccn2ap 11276 georeclim 11476 geoisumr 11481 cos1bnd 11722 sin01gt0 11724 sincos1sgn 11727 p1modz1 11756 nnoddm1d2 11869 dvdsnprmd 12079 divdenle 12151 mopnex 13299 reeff1olem 13486 cos02pilt1 13566 rplogcl 13594 cxplt 13630 cxple 13631 ltexp2 13654 apdiff 14080 |
Copyright terms: Public domain | W3C validator |