| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0lt1 | GIF version | ||
| Description: 0 is less than 1. Theorem I.21 of [Apostol] p. 20. Part of definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 17-Jan-1997.) |
| Ref | Expression |
|---|---|
| 0lt1 | ⊢ 0 < 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-0lt1 8101 | . 2 ⊢ 0 <ℝ 1 | |
| 2 | 0re 8142 | . . 3 ⊢ 0 ∈ ℝ | |
| 3 | 1re 8141 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | ltxrlt 8208 | . . 3 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ) → (0 < 1 ↔ 0 <ℝ 1)) | |
| 5 | 2, 3, 4 | mp2an 426 | . 2 ⊢ (0 < 1 ↔ 0 <ℝ 1) |
| 6 | 1, 5 | mpbir 146 | 1 ⊢ 0 < 1 |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∈ wcel 2200 class class class wbr 4082 ℝcr 7994 0cc0 7995 1c1 7996 <ℝ cltrr 7999 < clt 8177 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 ax-0lt1 8101 ax-rnegex 8104 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-xp 4724 df-pnf 8179 df-mnf 8180 df-ltxr 8182 |
| This theorem is referenced by: ine0 8536 0le1 8624 inelr 8727 1ap0 8733 eqneg 8875 ltp1 8987 ltm1 8989 recgt0 8993 mulgt1 9006 reclt1 9039 recgt1 9040 recgt1i 9041 recp1lt1 9042 recreclt 9043 sup3exmid 9100 nnge1 9129 nngt0 9131 0nnn 9133 nnrecgt0 9144 0ne1 9173 2pos 9197 3pos 9200 4pos 9203 5pos 9206 6pos 9207 7pos 9208 8pos 9209 9pos 9210 neg1lt0 9214 halflt1 9324 nn0p1gt0 9394 elnnnn0c 9410 elnnz1 9465 recnz 9536 1rp 9849 divlt1lt 9916 divle1le 9917 ledivge1le 9918 nnledivrp 9958 fz10 10238 fzpreddisj 10263 elfz1b 10282 modqfrac 10554 expgt1 10794 ltexp2a 10808 leexp2a 10809 expnbnd 10880 expnlbnd 10881 expnlbnd2 10882 nn0ltexp2 10926 expcanlem 10932 expcan 10933 bcn1 10975 s2fv0g 11314 resqrexlem1arp 11511 mulcn2 11818 reccn2ap 11819 georeclim 12019 geoisumr 12024 cos1bnd 12265 sin01gt0 12268 sincos1sgn 12271 p1modz1 12300 nnoddm1d2 12416 dvdsnprmd 12642 divdenle 12714 plendxnocndx 13242 znidomb 14616 mopnex 15173 ivthdichlem 15319 reeff1olem 15439 cos02pilt1 15519 rplogcl 15547 cxplt 15584 cxple 15585 ltexp2 15609 mersenne 15665 perfectlem2 15668 apdiff 16375 |
| Copyright terms: Public domain | W3C validator |