![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0lt1 | GIF version |
Description: 0 is less than 1. Theorem I.21 of [Apostol] p. 20. Part of definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 17-Jan-1997.) |
Ref | Expression |
---|---|
0lt1 | ⊢ 0 < 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-0lt1 7978 | . 2 ⊢ 0 <ℝ 1 | |
2 | 0re 8019 | . . 3 ⊢ 0 ∈ ℝ | |
3 | 1re 8018 | . . 3 ⊢ 1 ∈ ℝ | |
4 | ltxrlt 8085 | . . 3 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ) → (0 < 1 ↔ 0 <ℝ 1)) | |
5 | 2, 3, 4 | mp2an 426 | . 2 ⊢ (0 < 1 ↔ 0 <ℝ 1) |
6 | 1, 5 | mpbir 146 | 1 ⊢ 0 < 1 |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∈ wcel 2164 class class class wbr 4029 ℝcr 7871 0cc0 7872 1c1 7873 <ℝ cltrr 7876 < clt 8054 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1re 7966 ax-addrcl 7969 ax-0lt1 7978 ax-rnegex 7981 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-xp 4665 df-pnf 8056 df-mnf 8057 df-ltxr 8059 |
This theorem is referenced by: ine0 8413 0le1 8500 inelr 8603 1ap0 8609 eqneg 8751 ltp1 8863 ltm1 8865 recgt0 8869 mulgt1 8882 reclt1 8915 recgt1 8916 recgt1i 8917 recp1lt1 8918 recreclt 8919 sup3exmid 8976 nnge1 9005 nngt0 9007 0nnn 9009 nnrecgt0 9020 0ne1 9049 2pos 9073 3pos 9076 4pos 9079 5pos 9082 6pos 9083 7pos 9084 8pos 9085 9pos 9086 neg1lt0 9090 halflt1 9199 nn0p1gt0 9269 elnnnn0c 9285 elnnz1 9340 recnz 9410 1rp 9723 divlt1lt 9790 divle1le 9791 ledivge1le 9792 nnledivrp 9832 fz10 10112 fzpreddisj 10137 elfz1b 10156 modqfrac 10408 expgt1 10648 ltexp2a 10662 leexp2a 10663 expnbnd 10734 expnlbnd 10735 expnlbnd2 10736 nn0ltexp2 10780 expcanlem 10786 expcan 10787 bcn1 10829 resqrexlem1arp 11149 mulcn2 11455 reccn2ap 11456 georeclim 11656 geoisumr 11661 cos1bnd 11902 sin01gt0 11905 sincos1sgn 11908 p1modz1 11937 nnoddm1d2 12051 dvdsnprmd 12263 divdenle 12335 znidomb 14146 mopnex 14673 ivthdichlem 14805 reeff1olem 14906 cos02pilt1 14986 rplogcl 15014 cxplt 15050 cxple 15051 ltexp2 15074 apdiff 15538 |
Copyright terms: Public domain | W3C validator |