| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0lt1 | GIF version | ||
| Description: 0 is less than 1. Theorem I.21 of [Apostol] p. 20. Part of definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 17-Jan-1997.) |
| Ref | Expression |
|---|---|
| 0lt1 | ⊢ 0 < 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-0lt1 8002 | . 2 ⊢ 0 <ℝ 1 | |
| 2 | 0re 8043 | . . 3 ⊢ 0 ∈ ℝ | |
| 3 | 1re 8042 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | ltxrlt 8109 | . . 3 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ) → (0 < 1 ↔ 0 <ℝ 1)) | |
| 5 | 2, 3, 4 | mp2an 426 | . 2 ⊢ (0 < 1 ↔ 0 <ℝ 1) |
| 6 | 1, 5 | mpbir 146 | 1 ⊢ 0 < 1 |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∈ wcel 2167 class class class wbr 4034 ℝcr 7895 0cc0 7896 1c1 7897 <ℝ cltrr 7900 < clt 8078 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1re 7990 ax-addrcl 7993 ax-0lt1 8002 ax-rnegex 8005 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-xp 4670 df-pnf 8080 df-mnf 8081 df-ltxr 8083 |
| This theorem is referenced by: ine0 8437 0le1 8525 inelr 8628 1ap0 8634 eqneg 8776 ltp1 8888 ltm1 8890 recgt0 8894 mulgt1 8907 reclt1 8940 recgt1 8941 recgt1i 8942 recp1lt1 8943 recreclt 8944 sup3exmid 9001 nnge1 9030 nngt0 9032 0nnn 9034 nnrecgt0 9045 0ne1 9074 2pos 9098 3pos 9101 4pos 9104 5pos 9107 6pos 9108 7pos 9109 8pos 9110 9pos 9111 neg1lt0 9115 halflt1 9225 nn0p1gt0 9295 elnnnn0c 9311 elnnz1 9366 recnz 9436 1rp 9749 divlt1lt 9816 divle1le 9817 ledivge1le 9818 nnledivrp 9858 fz10 10138 fzpreddisj 10163 elfz1b 10182 modqfrac 10446 expgt1 10686 ltexp2a 10700 leexp2a 10701 expnbnd 10772 expnlbnd 10773 expnlbnd2 10774 nn0ltexp2 10818 expcanlem 10824 expcan 10825 bcn1 10867 resqrexlem1arp 11187 mulcn2 11494 reccn2ap 11495 georeclim 11695 geoisumr 11700 cos1bnd 11941 sin01gt0 11944 sincos1sgn 11947 p1modz1 11976 nnoddm1d2 12092 dvdsnprmd 12318 divdenle 12390 plendxnocndx 12916 znidomb 14290 mopnex 14825 ivthdichlem 14971 reeff1olem 15091 cos02pilt1 15171 rplogcl 15199 cxplt 15236 cxple 15237 ltexp2 15261 mersenne 15317 perfectlem2 15320 apdiff 15779 |
| Copyright terms: Public domain | W3C validator |