| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0lt1 | GIF version | ||
| Description: 0 is less than 1. Theorem I.21 of [Apostol] p. 20. Part of definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 17-Jan-1997.) |
| Ref | Expression |
|---|---|
| 0lt1 | ⊢ 0 < 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-0lt1 8013 | . 2 ⊢ 0 <ℝ 1 | |
| 2 | 0re 8054 | . . 3 ⊢ 0 ∈ ℝ | |
| 3 | 1re 8053 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | ltxrlt 8120 | . . 3 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ) → (0 < 1 ↔ 0 <ℝ 1)) | |
| 5 | 2, 3, 4 | mp2an 426 | . 2 ⊢ (0 < 1 ↔ 0 <ℝ 1) |
| 6 | 1, 5 | mpbir 146 | 1 ⊢ 0 < 1 |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∈ wcel 2175 class class class wbr 4043 ℝcr 7906 0cc0 7907 1c1 7908 <ℝ cltrr 7911 < clt 8089 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-cnex 7998 ax-resscn 7999 ax-1re 8001 ax-addrcl 8004 ax-0lt1 8013 ax-rnegex 8016 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-xp 4679 df-pnf 8091 df-mnf 8092 df-ltxr 8094 |
| This theorem is referenced by: ine0 8448 0le1 8536 inelr 8639 1ap0 8645 eqneg 8787 ltp1 8899 ltm1 8901 recgt0 8905 mulgt1 8918 reclt1 8951 recgt1 8952 recgt1i 8953 recp1lt1 8954 recreclt 8955 sup3exmid 9012 nnge1 9041 nngt0 9043 0nnn 9045 nnrecgt0 9056 0ne1 9085 2pos 9109 3pos 9112 4pos 9115 5pos 9118 6pos 9119 7pos 9120 8pos 9121 9pos 9122 neg1lt0 9126 halflt1 9236 nn0p1gt0 9306 elnnnn0c 9322 elnnz1 9377 recnz 9448 1rp 9761 divlt1lt 9828 divle1le 9829 ledivge1le 9830 nnledivrp 9870 fz10 10150 fzpreddisj 10175 elfz1b 10194 modqfrac 10463 expgt1 10703 ltexp2a 10717 leexp2a 10718 expnbnd 10789 expnlbnd 10790 expnlbnd2 10791 nn0ltexp2 10835 expcanlem 10841 expcan 10842 bcn1 10884 resqrexlem1arp 11235 mulcn2 11542 reccn2ap 11543 georeclim 11743 geoisumr 11748 cos1bnd 11989 sin01gt0 11992 sincos1sgn 11995 p1modz1 12024 nnoddm1d2 12140 dvdsnprmd 12366 divdenle 12438 plendxnocndx 12964 znidomb 14338 mopnex 14895 ivthdichlem 15041 reeff1olem 15161 cos02pilt1 15241 rplogcl 15269 cxplt 15306 cxple 15307 ltexp2 15331 mersenne 15387 perfectlem2 15390 apdiff 15851 |
| Copyright terms: Public domain | W3C validator |