Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0lt1 | GIF version |
Description: 0 is less than 1. Theorem I.21 of [Apostol] p. 20. Part of definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 17-Jan-1997.) |
Ref | Expression |
---|---|
0lt1 | ⊢ 0 < 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-0lt1 7859 | . 2 ⊢ 0 <ℝ 1 | |
2 | 0re 7899 | . . 3 ⊢ 0 ∈ ℝ | |
3 | 1re 7898 | . . 3 ⊢ 1 ∈ ℝ | |
4 | ltxrlt 7964 | . . 3 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ) → (0 < 1 ↔ 0 <ℝ 1)) | |
5 | 2, 3, 4 | mp2an 423 | . 2 ⊢ (0 < 1 ↔ 0 <ℝ 1) |
6 | 1, 5 | mpbir 145 | 1 ⊢ 0 < 1 |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∈ wcel 2136 class class class wbr 3982 ℝcr 7752 0cc0 7753 1c1 7754 <ℝ cltrr 7757 < clt 7933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1re 7847 ax-addrcl 7850 ax-0lt1 7859 ax-rnegex 7862 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-xp 4610 df-pnf 7935 df-mnf 7936 df-ltxr 7938 |
This theorem is referenced by: ine0 8292 0le1 8379 inelr 8482 1ap0 8488 eqneg 8628 ltp1 8739 ltm1 8741 recgt0 8745 mulgt1 8758 reclt1 8791 recgt1 8792 recgt1i 8793 recp1lt1 8794 recreclt 8795 sup3exmid 8852 nnge1 8880 nngt0 8882 0nnn 8884 nnrecgt0 8895 0ne1 8924 2pos 8948 3pos 8951 4pos 8954 5pos 8957 6pos 8958 7pos 8959 8pos 8960 9pos 8961 neg1lt0 8965 halflt1 9074 nn0p1gt0 9143 elnnnn0c 9159 elnnz1 9214 recnz 9284 1rp 9593 divlt1lt 9660 divle1le 9661 ledivge1le 9662 nnledivrp 9702 fz10 9981 fzpreddisj 10006 elfz1b 10025 modqfrac 10272 expgt1 10493 ltexp2a 10507 leexp2a 10508 expnbnd 10578 expnlbnd 10579 expnlbnd2 10580 nn0ltexp2 10623 expcanlem 10628 expcan 10629 bcn1 10671 resqrexlem1arp 10947 mulcn2 11253 reccn2ap 11254 georeclim 11454 geoisumr 11459 cos1bnd 11700 sin01gt0 11702 sincos1sgn 11705 p1modz1 11734 nnoddm1d2 11847 dvdsnprmd 12057 divdenle 12129 mopnex 13145 reeff1olem 13332 cos02pilt1 13412 rplogcl 13440 cxplt 13476 cxple 13477 ltexp2 13500 apdiff 13927 |
Copyright terms: Public domain | W3C validator |