![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0lt1 | GIF version |
Description: 0 is less than 1. Theorem I.21 of [Apostol] p. 20. Part of definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 17-Jan-1997.) |
Ref | Expression |
---|---|
0lt1 | ⊢ 0 < 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-0lt1 7601 | . 2 ⊢ 0 <ℝ 1 | |
2 | 0re 7638 | . . 3 ⊢ 0 ∈ ℝ | |
3 | 1re 7637 | . . 3 ⊢ 1 ∈ ℝ | |
4 | ltxrlt 7702 | . . 3 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ) → (0 < 1 ↔ 0 <ℝ 1)) | |
5 | 2, 3, 4 | mp2an 420 | . 2 ⊢ (0 < 1 ↔ 0 <ℝ 1) |
6 | 1, 5 | mpbir 145 | 1 ⊢ 0 < 1 |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∈ wcel 1448 class class class wbr 3875 ℝcr 7499 0cc0 7500 1c1 7501 <ℝ cltrr 7504 < clt 7672 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 584 ax-in2 585 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-13 1459 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-sep 3986 ax-pow 4038 ax-pr 4069 ax-un 4293 ax-setind 4390 ax-cnex 7586 ax-resscn 7587 ax-1re 7589 ax-addrcl 7592 ax-0lt1 7601 ax-rnegex 7604 |
This theorem depends on definitions: df-bi 116 df-3an 932 df-tru 1302 df-fal 1305 df-nf 1405 df-sb 1704 df-eu 1963 df-mo 1964 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ne 2268 df-nel 2363 df-ral 2380 df-rex 2381 df-rab 2384 df-v 2643 df-dif 3023 df-un 3025 df-in 3027 df-ss 3034 df-pw 3459 df-sn 3480 df-pr 3481 df-op 3483 df-uni 3684 df-br 3876 df-opab 3930 df-xp 4483 df-pnf 7674 df-mnf 7675 df-ltxr 7677 |
This theorem is referenced by: ine0 8023 0le1 8110 inelr 8212 1ap0 8218 eqneg 8353 ltp1 8460 ltm1 8462 recgt0 8466 mulgt1 8479 reclt1 8512 recgt1 8513 recgt1i 8514 recp1lt1 8515 recreclt 8516 sup3exmid 8573 nnge1 8601 nngt0 8603 0nnn 8605 nnrecgt0 8616 0ne1 8645 2pos 8669 3pos 8672 4pos 8675 5pos 8678 6pos 8679 7pos 8680 8pos 8681 9pos 8682 neg1lt0 8686 halflt1 8789 nn0p1gt0 8858 elnnnn0c 8874 elnnz1 8929 recnz 8996 1rp 9295 divlt1lt 9358 divle1le 9359 ledivge1le 9360 nnledivrp 9394 fz10 9667 fzpreddisj 9692 elfz1b 9711 modqfrac 9951 expgt1 10172 ltexp2a 10186 leexp2a 10187 expnbnd 10256 expnlbnd 10257 expnlbnd2 10258 expcanlem 10303 expcan 10304 bcn1 10345 resqrexlem1arp 10617 mulcn2 10920 reccn2ap 10921 georeclim 11121 geoisumr 11126 cos1bnd 11264 sin01gt0 11266 sincos1sgn 11269 nnoddm1d2 11402 dvdsnprmd 11599 divdenle 11667 mopnex 12433 |
Copyright terms: Public domain | W3C validator |