| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0lt1 | GIF version | ||
| Description: 0 is less than 1. Theorem I.21 of [Apostol] p. 20. Part of definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 17-Jan-1997.) |
| Ref | Expression |
|---|---|
| 0lt1 | ⊢ 0 < 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-0lt1 8051 | . 2 ⊢ 0 <ℝ 1 | |
| 2 | 0re 8092 | . . 3 ⊢ 0 ∈ ℝ | |
| 3 | 1re 8091 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | ltxrlt 8158 | . . 3 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ) → (0 < 1 ↔ 0 <ℝ 1)) | |
| 5 | 2, 3, 4 | mp2an 426 | . 2 ⊢ (0 < 1 ↔ 0 <ℝ 1) |
| 6 | 1, 5 | mpbir 146 | 1 ⊢ 0 < 1 |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∈ wcel 2177 class class class wbr 4051 ℝcr 7944 0cc0 7945 1c1 7946 <ℝ cltrr 7949 < clt 8127 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1re 8039 ax-addrcl 8042 ax-0lt1 8051 ax-rnegex 8054 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-xp 4689 df-pnf 8129 df-mnf 8130 df-ltxr 8132 |
| This theorem is referenced by: ine0 8486 0le1 8574 inelr 8677 1ap0 8683 eqneg 8825 ltp1 8937 ltm1 8939 recgt0 8943 mulgt1 8956 reclt1 8989 recgt1 8990 recgt1i 8991 recp1lt1 8992 recreclt 8993 sup3exmid 9050 nnge1 9079 nngt0 9081 0nnn 9083 nnrecgt0 9094 0ne1 9123 2pos 9147 3pos 9150 4pos 9153 5pos 9156 6pos 9157 7pos 9158 8pos 9159 9pos 9160 neg1lt0 9164 halflt1 9274 nn0p1gt0 9344 elnnnn0c 9360 elnnz1 9415 recnz 9486 1rp 9799 divlt1lt 9866 divle1le 9867 ledivge1le 9868 nnledivrp 9908 fz10 10188 fzpreddisj 10213 elfz1b 10232 modqfrac 10504 expgt1 10744 ltexp2a 10758 leexp2a 10759 expnbnd 10830 expnlbnd 10831 expnlbnd2 10832 nn0ltexp2 10876 expcanlem 10882 expcan 10883 bcn1 10925 resqrexlem1arp 11391 mulcn2 11698 reccn2ap 11699 georeclim 11899 geoisumr 11904 cos1bnd 12145 sin01gt0 12148 sincos1sgn 12151 p1modz1 12180 nnoddm1d2 12296 dvdsnprmd 12522 divdenle 12594 plendxnocndx 13121 znidomb 14495 mopnex 15052 ivthdichlem 15198 reeff1olem 15318 cos02pilt1 15398 rplogcl 15426 cxplt 15463 cxple 15464 ltexp2 15488 mersenne 15544 perfectlem2 15547 apdiff 16128 |
| Copyright terms: Public domain | W3C validator |