| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0lt1 | GIF version | ||
| Description: 0 is less than 1. Theorem I.21 of [Apostol] p. 20. Part of definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 17-Jan-1997.) |
| Ref | Expression |
|---|---|
| 0lt1 | ⊢ 0 < 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-0lt1 8004 | . 2 ⊢ 0 <ℝ 1 | |
| 2 | 0re 8045 | . . 3 ⊢ 0 ∈ ℝ | |
| 3 | 1re 8044 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | ltxrlt 8111 | . . 3 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ) → (0 < 1 ↔ 0 <ℝ 1)) | |
| 5 | 2, 3, 4 | mp2an 426 | . 2 ⊢ (0 < 1 ↔ 0 <ℝ 1) |
| 6 | 1, 5 | mpbir 146 | 1 ⊢ 0 < 1 |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∈ wcel 2167 class class class wbr 4034 ℝcr 7897 0cc0 7898 1c1 7899 <ℝ cltrr 7902 < clt 8080 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7989 ax-resscn 7990 ax-1re 7992 ax-addrcl 7995 ax-0lt1 8004 ax-rnegex 8007 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-xp 4670 df-pnf 8082 df-mnf 8083 df-ltxr 8085 |
| This theorem is referenced by: ine0 8439 0le1 8527 inelr 8630 1ap0 8636 eqneg 8778 ltp1 8890 ltm1 8892 recgt0 8896 mulgt1 8909 reclt1 8942 recgt1 8943 recgt1i 8944 recp1lt1 8945 recreclt 8946 sup3exmid 9003 nnge1 9032 nngt0 9034 0nnn 9036 nnrecgt0 9047 0ne1 9076 2pos 9100 3pos 9103 4pos 9106 5pos 9109 6pos 9110 7pos 9111 8pos 9112 9pos 9113 neg1lt0 9117 halflt1 9227 nn0p1gt0 9297 elnnnn0c 9313 elnnz1 9368 recnz 9438 1rp 9751 divlt1lt 9818 divle1le 9819 ledivge1le 9820 nnledivrp 9860 fz10 10140 fzpreddisj 10165 elfz1b 10184 modqfrac 10448 expgt1 10688 ltexp2a 10702 leexp2a 10703 expnbnd 10774 expnlbnd 10775 expnlbnd2 10776 nn0ltexp2 10820 expcanlem 10826 expcan 10827 bcn1 10869 resqrexlem1arp 11189 mulcn2 11496 reccn2ap 11497 georeclim 11697 geoisumr 11702 cos1bnd 11943 sin01gt0 11946 sincos1sgn 11949 p1modz1 11978 nnoddm1d2 12094 dvdsnprmd 12320 divdenle 12392 plendxnocndx 12918 znidomb 14292 mopnex 14849 ivthdichlem 14995 reeff1olem 15115 cos02pilt1 15195 rplogcl 15223 cxplt 15260 cxple 15261 ltexp2 15285 mersenne 15341 perfectlem2 15344 apdiff 15805 |
| Copyright terms: Public domain | W3C validator |