| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0lt1 | GIF version | ||
| Description: 0 is less than 1. Theorem I.21 of [Apostol] p. 20. Part of definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 17-Jan-1997.) |
| Ref | Expression |
|---|---|
| 0lt1 | ⊢ 0 < 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-0lt1 8030 | . 2 ⊢ 0 <ℝ 1 | |
| 2 | 0re 8071 | . . 3 ⊢ 0 ∈ ℝ | |
| 3 | 1re 8070 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | ltxrlt 8137 | . . 3 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ) → (0 < 1 ↔ 0 <ℝ 1)) | |
| 5 | 2, 3, 4 | mp2an 426 | . 2 ⊢ (0 < 1 ↔ 0 <ℝ 1) |
| 6 | 1, 5 | mpbir 146 | 1 ⊢ 0 < 1 |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∈ wcel 2175 class class class wbr 4043 ℝcr 7923 0cc0 7924 1c1 7925 <ℝ cltrr 7928 < clt 8106 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1re 8018 ax-addrcl 8021 ax-0lt1 8030 ax-rnegex 8033 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-xp 4680 df-pnf 8108 df-mnf 8109 df-ltxr 8111 |
| This theorem is referenced by: ine0 8465 0le1 8553 inelr 8656 1ap0 8662 eqneg 8804 ltp1 8916 ltm1 8918 recgt0 8922 mulgt1 8935 reclt1 8968 recgt1 8969 recgt1i 8970 recp1lt1 8971 recreclt 8972 sup3exmid 9029 nnge1 9058 nngt0 9060 0nnn 9062 nnrecgt0 9073 0ne1 9102 2pos 9126 3pos 9129 4pos 9132 5pos 9135 6pos 9136 7pos 9137 8pos 9138 9pos 9139 neg1lt0 9143 halflt1 9253 nn0p1gt0 9323 elnnnn0c 9339 elnnz1 9394 recnz 9465 1rp 9778 divlt1lt 9845 divle1le 9846 ledivge1le 9847 nnledivrp 9887 fz10 10167 fzpreddisj 10192 elfz1b 10211 modqfrac 10480 expgt1 10720 ltexp2a 10734 leexp2a 10735 expnbnd 10806 expnlbnd 10807 expnlbnd2 10808 nn0ltexp2 10852 expcanlem 10858 expcan 10859 bcn1 10901 resqrexlem1arp 11258 mulcn2 11565 reccn2ap 11566 georeclim 11766 geoisumr 11771 cos1bnd 12012 sin01gt0 12015 sincos1sgn 12018 p1modz1 12047 nnoddm1d2 12163 dvdsnprmd 12389 divdenle 12461 plendxnocndx 12988 znidomb 14362 mopnex 14919 ivthdichlem 15065 reeff1olem 15185 cos02pilt1 15265 rplogcl 15293 cxplt 15330 cxple 15331 ltexp2 15355 mersenne 15411 perfectlem2 15414 apdiff 15920 |
| Copyright terms: Public domain | W3C validator |