ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rngstrg GIF version

Theorem rngstrg 12113
Description: A constructed ring is a structure. (Contributed by Mario Carneiro, 28-Sep-2013.) (Revised by Jim Kingdon, 3-Feb-2023.)
Hypothesis
Ref Expression
rngfn.r 𝑅 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩}
Assertion
Ref Expression
rngstrg ((𝐵𝑉+𝑊·𝑋) → 𝑅 Struct ⟨1, 3⟩)

Proof of Theorem rngstrg
StepHypRef Expression
1 rngfn.r . 2 𝑅 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩}
2 1nn 8755 . . 3 1 ∈ ℕ
3 basendx 12052 . . 3 (Base‘ndx) = 1
4 1lt2 8913 . . 3 1 < 2
5 2nn 8905 . . 3 2 ∈ ℕ
6 plusgndx 12091 . . 3 (+g‘ndx) = 2
7 2lt3 8914 . . 3 2 < 3
8 3nn 8906 . . 3 3 ∈ ℕ
9 mulrndx 12108 . . 3 (.r‘ndx) = 3
102, 3, 4, 5, 6, 7, 8, 9strle3g 12090 . 2 ((𝐵𝑉+𝑊·𝑋) → {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} Struct ⟨1, 3⟩)
111, 10eqbrtrid 3971 1 ((𝐵𝑉+𝑊·𝑋) → 𝑅 Struct ⟨1, 3⟩)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 963   = wceq 1332  wcel 1481  {ctp 3534  cop 3535   class class class wbr 3937  cfv 5131  1c1 7645  2c2 8795  3c3 8796   Struct cstr 11994  ndxcnx 11995  Basecbs 11998  +gcplusg 12060  .rcmulr 12061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-tp 3540  df-op 3541  df-uni 3745  df-int 3780  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-inn 8745  df-2 8803  df-3 8804  df-n0 9002  df-z 9079  df-uz 9351  df-fz 9822  df-struct 12000  df-ndx 12001  df-slot 12002  df-base 12004  df-plusg 12073  df-mulr 12074
This theorem is referenced by:  rngbaseg  12114  rngplusgg  12115  rngmulrg  12116  srngstrd  12120  ipsstrd  12139
  Copyright terms: Public domain W3C validator