![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rngstrg | GIF version |
Description: A constructed ring is a structure. (Contributed by Mario Carneiro, 28-Sep-2013.) (Revised by Jim Kingdon, 3-Feb-2023.) |
Ref | Expression |
---|---|
rngfn.r | ⊢ 𝑅 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} |
Ref | Expression |
---|---|
rngstrg | ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊 ∧ · ∈ 𝑋) → 𝑅 Struct 〈1, 3〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngfn.r | . 2 ⊢ 𝑅 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} | |
2 | 1nn 8589 | . . 3 ⊢ 1 ∈ ℕ | |
3 | basendx 11795 | . . 3 ⊢ (Base‘ndx) = 1 | |
4 | 1lt2 8741 | . . 3 ⊢ 1 < 2 | |
5 | 2nn 8733 | . . 3 ⊢ 2 ∈ ℕ | |
6 | plusgndx 11834 | . . 3 ⊢ (+g‘ndx) = 2 | |
7 | 2lt3 8742 | . . 3 ⊢ 2 < 3 | |
8 | 3nn 8734 | . . 3 ⊢ 3 ∈ ℕ | |
9 | mulrndx 11851 | . . 3 ⊢ (.r‘ndx) = 3 | |
10 | 2, 3, 4, 5, 6, 7, 8, 9 | strle3g 11833 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊 ∧ · ∈ 𝑋) → {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} Struct 〈1, 3〉) |
11 | 1, 10 | syl5eqbr 3908 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊 ∧ · ∈ 𝑋) → 𝑅 Struct 〈1, 3〉) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 930 = wceq 1299 ∈ wcel 1448 {ctp 3476 〈cop 3477 class class class wbr 3875 ‘cfv 5059 1c1 7501 2c2 8629 3c3 8630 Struct cstr 11737 ndxcnx 11738 Basecbs 11741 +gcplusg 11803 .rcmulr 11804 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 584 ax-in2 585 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-13 1459 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-sep 3986 ax-pow 4038 ax-pr 4069 ax-un 4293 ax-setind 4390 ax-cnex 7586 ax-resscn 7587 ax-1cn 7588 ax-1re 7589 ax-icn 7590 ax-addcl 7591 ax-addrcl 7592 ax-mulcl 7593 ax-addcom 7595 ax-addass 7597 ax-distr 7599 ax-i2m1 7600 ax-0lt1 7601 ax-0id 7603 ax-rnegex 7604 ax-cnre 7606 ax-pre-ltirr 7607 ax-pre-ltwlin 7608 ax-pre-lttrn 7609 ax-pre-apti 7610 ax-pre-ltadd 7611 |
This theorem depends on definitions: df-bi 116 df-3or 931 df-3an 932 df-tru 1302 df-fal 1305 df-nf 1405 df-sb 1704 df-eu 1963 df-mo 1964 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ne 2268 df-nel 2363 df-ral 2380 df-rex 2381 df-reu 2382 df-rab 2384 df-v 2643 df-sbc 2863 df-dif 3023 df-un 3025 df-in 3027 df-ss 3034 df-nul 3311 df-pw 3459 df-sn 3480 df-pr 3481 df-tp 3482 df-op 3483 df-uni 3684 df-int 3719 df-br 3876 df-opab 3930 df-mpt 3931 df-id 4153 df-xp 4483 df-rel 4484 df-cnv 4485 df-co 4486 df-dm 4487 df-rn 4488 df-res 4489 df-ima 4490 df-iota 5024 df-fun 5061 df-fn 5062 df-f 5063 df-fv 5067 df-riota 5662 df-ov 5709 df-oprab 5710 df-mpo 5711 df-pnf 7674 df-mnf 7675 df-xr 7676 df-ltxr 7677 df-le 7678 df-sub 7806 df-neg 7807 df-inn 8579 df-2 8637 df-3 8638 df-n0 8830 df-z 8907 df-uz 9177 df-fz 9632 df-struct 11743 df-ndx 11744 df-slot 11745 df-base 11747 df-plusg 11816 df-mulr 11817 |
This theorem is referenced by: rngbaseg 11857 rngplusgg 11858 rngmulrg 11859 srngstrd 11863 ipsstrd 11882 |
Copyright terms: Public domain | W3C validator |