Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2nn | GIF version |
Description: 2 is a positive integer. (Contributed by NM, 20-Aug-2001.) |
Ref | Expression |
---|---|
2nn | ⊢ 2 ∈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2 8937 | . 2 ⊢ 2 = (1 + 1) | |
2 | 1nn 8889 | . . 3 ⊢ 1 ∈ ℕ | |
3 | peano2nn 8890 | . . 3 ⊢ (1 ∈ ℕ → (1 + 1) ∈ ℕ) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (1 + 1) ∈ ℕ |
5 | 1, 4 | eqeltri 2243 | 1 ⊢ 2 ∈ ℕ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2141 (class class class)co 5853 1c1 7775 + caddc 7777 ℕcn 8878 2c2 8929 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-sep 4107 ax-cnex 7865 ax-resscn 7866 ax-1re 7868 ax-addrcl 7871 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-iota 5160 df-fv 5206 df-ov 5856 df-inn 8879 df-2 8937 |
This theorem is referenced by: 3nn 9040 2nn0 9152 2z 9240 uz3m2nn 9532 ige2m1fz1 10065 qbtwnre 10213 flhalf 10258 sqeq0 10539 sqeq0d 10608 facavg 10680 bcn2 10698 resqrexlemnm 10982 abs00ap 11026 geo2sum 11477 geo2lim 11479 ege2le3 11634 ef01bndlem 11719 mod2eq0even 11837 mod2eq1n2dvds 11838 sqgcd 11984 3lcm2e6woprm 12040 prm2orodd 12080 3prm 12082 4nprm 12083 isprm5lem 12095 divgcdodd 12097 isevengcd2 12112 3lcm2e6 12114 pw2dvdslemn 12119 pw2dvds 12120 pw2dvdseulemle 12121 oddpwdclemxy 12123 oddpwdclemodd 12126 oddpwdclemdc 12127 oddpwdc 12128 sqpweven 12129 2sqpwodd 12130 pythagtriplem4 12222 oddprmdvds 12306 4sqlem5 12334 4sqlem6 12335 4sqlem10 12339 evenennn 12348 exmidunben 12381 plusgndx 12511 plusgid 12512 plusgslid 12513 grpstrg 12525 grpbaseg 12526 grpplusgg 12527 rngstrg 12533 lmodstrd 12551 topgrpstrd 12569 dsndx 12576 dsid 12577 dsslid 12578 dveflem 13481 lgsval 13699 lgsfvalg 13700 lgsfcl2 13701 lgsval2lem 13705 lgsdir2lem2 13724 lgsdir2 13728 2sqlem3 13747 2sqlem8 13753 ex-fl 13760 ex-ceil 13761 redcwlpolemeq1 14086 nconstwlpolem0 14094 |
Copyright terms: Public domain | W3C validator |