Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2nn | GIF version |
Description: 2 is a positive integer. (Contributed by NM, 20-Aug-2001.) |
Ref | Expression |
---|---|
2nn | ⊢ 2 ∈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2 8924 | . 2 ⊢ 2 = (1 + 1) | |
2 | 1nn 8876 | . . 3 ⊢ 1 ∈ ℕ | |
3 | peano2nn 8877 | . . 3 ⊢ (1 ∈ ℕ → (1 + 1) ∈ ℕ) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (1 + 1) ∈ ℕ |
5 | 1, 4 | eqeltri 2243 | 1 ⊢ 2 ∈ ℕ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2141 (class class class)co 5850 1c1 7762 + caddc 7764 ℕcn 8865 2c2 8916 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-sep 4105 ax-cnex 7852 ax-resscn 7853 ax-1re 7855 ax-addrcl 7858 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-br 3988 df-iota 5158 df-fv 5204 df-ov 5853 df-inn 8866 df-2 8924 |
This theorem is referenced by: 3nn 9027 2nn0 9139 2z 9227 uz3m2nn 9519 ige2m1fz1 10052 qbtwnre 10200 flhalf 10245 sqeq0 10526 sqeq0d 10595 facavg 10667 bcn2 10685 resqrexlemnm 10969 abs00ap 11013 geo2sum 11464 geo2lim 11466 ege2le3 11621 ef01bndlem 11706 mod2eq0even 11824 mod2eq1n2dvds 11825 sqgcd 11971 3lcm2e6woprm 12027 prm2orodd 12067 3prm 12069 4nprm 12070 isprm5lem 12082 divgcdodd 12084 isevengcd2 12099 3lcm2e6 12101 pw2dvdslemn 12106 pw2dvds 12107 pw2dvdseulemle 12108 oddpwdclemxy 12110 oddpwdclemodd 12113 oddpwdclemdc 12114 oddpwdc 12115 sqpweven 12116 2sqpwodd 12117 pythagtriplem4 12209 oddprmdvds 12293 4sqlem5 12321 4sqlem6 12322 4sqlem10 12326 evenennn 12335 exmidunben 12368 plusgndx 12497 plusgid 12498 plusgslid 12499 grpstrg 12511 grpbaseg 12512 grpplusgg 12513 rngstrg 12519 lmodstrd 12537 topgrpstrd 12555 dsndx 12562 dsid 12563 dsslid 12564 dveflem 13402 lgsval 13620 lgsfvalg 13621 lgsfcl2 13622 lgsval2lem 13626 lgsdir2lem2 13645 lgsdir2 13649 2sqlem3 13668 2sqlem8 13674 ex-fl 13681 ex-ceil 13682 redcwlpolemeq1 14008 nconstwlpolem0 14016 |
Copyright terms: Public domain | W3C validator |