| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2nn | GIF version | ||
| Description: 2 is a positive integer. (Contributed by NM, 20-Aug-2001.) |
| Ref | Expression |
|---|---|
| 2nn | ⊢ 2 ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2 9049 | . 2 ⊢ 2 = (1 + 1) | |
| 2 | 1nn 9001 | . . 3 ⊢ 1 ∈ ℕ | |
| 3 | peano2nn 9002 | . . 3 ⊢ (1 ∈ ℕ → (1 + 1) ∈ ℕ) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (1 + 1) ∈ ℕ |
| 5 | 1, 4 | eqeltri 2269 | 1 ⊢ 2 ∈ ℕ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 (class class class)co 5922 1c1 7880 + caddc 7882 ℕcn 8990 2c2 9041 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4151 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 df-inn 8991 df-2 9049 |
| This theorem is referenced by: 3nn 9153 2nn0 9266 2z 9354 uz3m2nn 9647 ige2m1fz1 10184 qbtwnre 10346 flhalf 10392 sqeq0 10694 sqeq0d 10764 facavg 10838 bcn2 10856 resqrexlemnm 11183 abs00ap 11227 geo2sum 11679 geo2lim 11681 ege2le3 11836 ef01bndlem 11921 mod2eq0even 12043 mod2eq1n2dvds 12044 bits0o 12114 bitsp1 12115 bitsp1o 12117 bitsfzolem 12118 bitsfzo 12119 sqgcd 12196 3lcm2e6woprm 12254 prm2orodd 12294 3prm 12296 4nprm 12297 isprm5lem 12309 divgcdodd 12311 isevengcd2 12326 3lcm2e6 12328 pw2dvdslemn 12333 pw2dvds 12334 pw2dvdseulemle 12335 oddpwdclemxy 12337 oddpwdclemodd 12340 oddpwdclemdc 12341 oddpwdc 12342 sqpweven 12343 2sqpwodd 12344 pythagtriplem4 12437 oddprmdvds 12523 4sqlem5 12551 4sqlem6 12552 4sqlem10 12556 4sqlem12 12571 dec2dvds 12580 dec5nprm 12583 dec2nprm 12584 2expltfac 12608 evenennn 12610 exmidunben 12643 plusgndx 12787 plusgid 12788 plusgndxnn 12789 plusgslid 12790 grpstrg 12803 grpbaseg 12804 grpplusgg 12805 rngstrg 12812 lmodstrd 12841 topgrpstrd 12873 dsndx 12888 dsid 12889 dsslid 12890 dsndxnn 12891 slotsdifdsndx 12898 slotsdifunifndx 12905 cnfldstr 14114 dveflem 14962 1sgm2ppw 15231 mersenne 15233 perfect1 15234 perfectlem1 15235 perfectlem2 15236 perfect 15237 lgsval 15245 lgsfvalg 15246 lgsfcl2 15247 lgsval2lem 15251 lgsdir2lem2 15270 lgsdir2 15274 gausslemma2dlem1a 15299 gausslemma2dlem1cl 15300 gausslemma2dlem1f1o 15301 gausslemma2dlem4 15305 gausslemma2d 15310 lgseisenlem1 15311 lgseisenlem2 15312 lgseisenlem3 15313 lgseisenlem4 15314 lgsquadlemofi 15317 lgsquadlem1 15318 lgsquadlem2 15319 lgsquad2lem2 15323 m1lgs 15326 2lgslem1c 15331 2lgslem3a1 15338 2lgslem3d1 15341 2lgslem4 15344 2lgs 15345 2sqlem3 15358 2sqlem8 15364 ex-fl 15371 ex-ceil 15372 redcwlpolemeq1 15698 nconstwlpolem0 15707 |
| Copyright terms: Public domain | W3C validator |