Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2nn | GIF version |
Description: 2 is a positive integer. (Contributed by NM, 20-Aug-2001.) |
Ref | Expression |
---|---|
2nn | ⊢ 2 ∈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2 8912 | . 2 ⊢ 2 = (1 + 1) | |
2 | 1nn 8864 | . . 3 ⊢ 1 ∈ ℕ | |
3 | peano2nn 8865 | . . 3 ⊢ (1 ∈ ℕ → (1 + 1) ∈ ℕ) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (1 + 1) ∈ ℕ |
5 | 1, 4 | eqeltri 2238 | 1 ⊢ 2 ∈ ℕ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 (class class class)co 5841 1c1 7750 + caddc 7752 ℕcn 8853 2c2 8904 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-sep 4099 ax-cnex 7840 ax-resscn 7841 ax-1re 7843 ax-addrcl 7846 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ral 2448 df-rex 2449 df-v 2727 df-un 3119 df-in 3121 df-ss 3128 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-int 3824 df-br 3982 df-iota 5152 df-fv 5195 df-ov 5844 df-inn 8854 df-2 8912 |
This theorem is referenced by: 3nn 9015 2nn0 9127 2z 9215 uz3m2nn 9507 ige2m1fz1 10040 qbtwnre 10188 flhalf 10233 sqeq0 10514 sqeq0d 10583 facavg 10655 bcn2 10673 resqrexlemnm 10956 abs00ap 11000 geo2sum 11451 geo2lim 11453 ege2le3 11608 ef01bndlem 11693 mod2eq0even 11811 mod2eq1n2dvds 11812 sqgcd 11958 3lcm2e6woprm 12014 prm2orodd 12054 3prm 12056 4nprm 12057 isprm5lem 12069 divgcdodd 12071 isevengcd2 12086 3lcm2e6 12088 pw2dvdslemn 12093 pw2dvds 12094 pw2dvdseulemle 12095 oddpwdclemxy 12097 oddpwdclemodd 12100 oddpwdclemdc 12101 oddpwdc 12102 sqpweven 12103 2sqpwodd 12104 pythagtriplem4 12196 oddprmdvds 12280 4sqlem5 12308 4sqlem6 12309 4sqlem10 12313 evenennn 12322 exmidunben 12355 plusgndx 12483 plusgid 12484 plusgslid 12485 grpstrg 12497 grpbaseg 12498 grpplusgg 12499 rngstrg 12505 lmodstrd 12523 topgrpstrd 12541 dsndx 12548 dsid 12549 dsslid 12550 dveflem 13287 lgsval 13505 lgsfvalg 13506 lgsfcl2 13507 lgsval2lem 13511 lgsdir2lem2 13530 lgsdir2 13534 2sqlem3 13553 2sqlem8 13559 ex-fl 13566 ex-ceil 13567 redcwlpolemeq1 13893 nconstwlpolem0 13901 |
Copyright terms: Public domain | W3C validator |