![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mulrslid | GIF version |
Description: Slot property of .r. (Contributed by Jim Kingdon, 3-Feb-2023.) |
Ref | Expression |
---|---|
mulrslid | ⊢ (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mulr 12544 | . 2 ⊢ .r = Slot 3 | |
2 | 3nn 9079 | . 2 ⊢ 3 ∈ ℕ | |
3 | 1, 2 | ndxslid 12481 | 1 ⊢ (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1353 ∈ wcel 2148 ‘cfv 5216 ℕcn 8917 3c3 8969 ndxcnx 12453 Slot cslot 12455 .rcmulr 12531 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4121 ax-pow 4174 ax-pr 4209 ax-un 4433 ax-cnex 7901 ax-resscn 7902 ax-1re 7904 ax-addrcl 7907 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2739 df-sbc 2963 df-un 3133 df-in 3135 df-ss 3142 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-int 3845 df-br 4004 df-opab 4065 df-mpt 4066 df-id 4293 df-xp 4632 df-rel 4633 df-cnv 4634 df-co 4635 df-dm 4636 df-rn 4637 df-res 4638 df-iota 5178 df-fun 5218 df-fv 5224 df-ov 5877 df-inn 8918 df-2 8976 df-3 8977 df-ndx 12459 df-slot 12460 df-mulr 12544 |
This theorem is referenced by: rngmulrg 12590 ressmulrg 12597 srngmulrd 12601 ipsmulrd 12631 prdsex 12712 imasex 12720 imasival 12721 imasbas 12722 imasplusg 12723 imasmulr 12724 imasmulfn 12735 imasmulval 12736 imasmulf 12737 qusmulval 12750 qusmulf 12751 fnmgp 13125 mgpvalg 13126 mgpplusgg 13127 mgpex 13128 mgpbasg 13129 mgpscag 13130 mgptsetg 13131 mgpdsg 13133 mgpress 13134 issrg 13141 isring 13176 ring1 13229 opprvalg 13234 opprmulfvalg 13235 opprex 13238 opprsllem 13239 cnfldmul 13392 |
Copyright terms: Public domain | W3C validator |