| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulrslid | GIF version | ||
| Description: Slot property of .r. (Contributed by Jim Kingdon, 3-Feb-2023.) |
| Ref | Expression |
|---|---|
| mulrslid | ⊢ (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mulr 13132 | . 2 ⊢ .r = Slot 3 | |
| 2 | 3nn 9281 | . 2 ⊢ 3 ∈ ℕ | |
| 3 | 1, 2 | ndxslid 13065 | 1 ⊢ (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1395 ∈ wcel 2200 ‘cfv 5318 ℕcn 9118 3c3 9170 ndxcnx 13037 Slot cslot 13039 .rcmulr 13119 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-cnex 8098 ax-resscn 8099 ax-1re 8101 ax-addrcl 8104 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-iota 5278 df-fun 5320 df-fv 5326 df-ov 6010 df-inn 9119 df-2 9177 df-3 9178 df-ndx 13043 df-slot 13044 df-mulr 13132 |
| This theorem is referenced by: rngmulrg 13179 ressmulrg 13186 srngmulrd 13190 ipsmulrd 13220 prdsex 13310 prdsval 13314 prdsmulr 13319 prdsmulrfval 13327 imasex 13346 imasival 13347 imasbas 13348 imasplusg 13349 imasmulr 13350 imasmulfn 13361 imasmulval 13362 imasmulf 13363 qusmulval 13378 qusmulf 13379 fnmgp 13893 mgpvalg 13894 mgpplusgg 13895 mgpex 13896 mgpbasg 13897 mgpscag 13898 mgptsetg 13899 mgpdsg 13901 mgpress 13902 isrng 13905 issrg 13936 isring 13971 ring1 14030 opprvalg 14040 opprmulfvalg 14041 opprex 14044 opprsllem 14045 subrngintm 14184 islmod 14263 rmodislmodlem 14322 sraval 14409 sralemg 14410 sramulrg 14413 srascag 14414 sravscag 14415 sraipg 14416 sraex 14418 crngridl 14502 mpocnfldmul 14535 zlmmulrg 14603 znmul 14614 psrval 14638 fnpsr 14639 |
| Copyright terms: Public domain | W3C validator |