| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulrslid | GIF version | ||
| Description: Slot property of .r. (Contributed by Jim Kingdon, 3-Feb-2023.) |
| Ref | Expression |
|---|---|
| mulrslid | ⊢ (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mulr 12967 | . 2 ⊢ .r = Slot 3 | |
| 2 | 3nn 9206 | . 2 ⊢ 3 ∈ ℕ | |
| 3 | 1, 2 | ndxslid 12901 | 1 ⊢ (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1373 ∈ wcel 2177 ‘cfv 5276 ℕcn 9043 3c3 9095 ndxcnx 12873 Slot cslot 12875 .rcmulr 12954 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-cnex 8023 ax-resscn 8024 ax-1re 8026 ax-addrcl 8029 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3000 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-iota 5237 df-fun 5278 df-fv 5284 df-ov 5954 df-inn 9044 df-2 9102 df-3 9103 df-ndx 12879 df-slot 12880 df-mulr 12967 |
| This theorem is referenced by: rngmulrg 13014 ressmulrg 13021 srngmulrd 13025 ipsmulrd 13055 prdsex 13145 prdsval 13149 prdsmulr 13154 prdsmulrfval 13162 imasex 13181 imasival 13182 imasbas 13183 imasplusg 13184 imasmulr 13185 imasmulfn 13196 imasmulval 13197 imasmulf 13198 qusmulval 13213 qusmulf 13214 fnmgp 13728 mgpvalg 13729 mgpplusgg 13730 mgpex 13731 mgpbasg 13732 mgpscag 13733 mgptsetg 13734 mgpdsg 13736 mgpress 13737 isrng 13740 issrg 13771 isring 13806 ring1 13865 opprvalg 13875 opprmulfvalg 13876 opprex 13879 opprsllem 13880 subrngintm 14018 islmod 14097 rmodislmodlem 14156 sraval 14243 sralemg 14244 sramulrg 14247 srascag 14248 sravscag 14249 sraipg 14250 sraex 14252 crngridl 14336 mpocnfldmul 14369 zlmmulrg 14437 znmul 14448 psrval 14472 fnpsr 14473 |
| Copyright terms: Public domain | W3C validator |