| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulrslid | GIF version | ||
| Description: Slot property of .r. (Contributed by Jim Kingdon, 3-Feb-2023.) |
| Ref | Expression |
|---|---|
| mulrslid | ⊢ (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mulr 13090 | . 2 ⊢ .r = Slot 3 | |
| 2 | 3nn 9241 | . 2 ⊢ 3 ∈ ℕ | |
| 3 | 1, 2 | ndxslid 13023 | 1 ⊢ (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1375 ∈ wcel 2180 ‘cfv 5294 ℕcn 9078 3c3 9130 ndxcnx 12995 Slot cslot 12997 .rcmulr 13077 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-cnex 8058 ax-resscn 8059 ax-1re 8061 ax-addrcl 8064 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-sbc 3009 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-iota 5254 df-fun 5296 df-fv 5302 df-ov 5977 df-inn 9079 df-2 9137 df-3 9138 df-ndx 13001 df-slot 13002 df-mulr 13090 |
| This theorem is referenced by: rngmulrg 13137 ressmulrg 13144 srngmulrd 13148 ipsmulrd 13178 prdsex 13268 prdsval 13272 prdsmulr 13277 prdsmulrfval 13285 imasex 13304 imasival 13305 imasbas 13306 imasplusg 13307 imasmulr 13308 imasmulfn 13319 imasmulval 13320 imasmulf 13321 qusmulval 13336 qusmulf 13337 fnmgp 13851 mgpvalg 13852 mgpplusgg 13853 mgpex 13854 mgpbasg 13855 mgpscag 13856 mgptsetg 13857 mgpdsg 13859 mgpress 13860 isrng 13863 issrg 13894 isring 13929 ring1 13988 opprvalg 13998 opprmulfvalg 13999 opprex 14002 opprsllem 14003 subrngintm 14141 islmod 14220 rmodislmodlem 14279 sraval 14366 sralemg 14367 sramulrg 14370 srascag 14371 sravscag 14372 sraipg 14373 sraex 14375 crngridl 14459 mpocnfldmul 14492 zlmmulrg 14560 znmul 14571 psrval 14595 fnpsr 14596 |
| Copyright terms: Public domain | W3C validator |