| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > mulrslid | GIF version | ||
| Description: Slot property of .r. (Contributed by Jim Kingdon, 3-Feb-2023.) | 
| Ref | Expression | 
|---|---|
| mulrslid | ⊢ (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-mulr 12769 | . 2 ⊢ .r = Slot 3 | |
| 2 | 3nn 9153 | . 2 ⊢ 3 ∈ ℕ | |
| 3 | 1, 2 | ndxslid 12703 | 1 ⊢ (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ) | 
| Colors of variables: wff set class | 
| Syntax hints: ∧ wa 104 = wceq 1364 ∈ wcel 2167 ‘cfv 5258 ℕcn 8990 3c3 9042 ndxcnx 12675 Slot cslot 12677 .rcmulr 12756 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-iota 5219 df-fun 5260 df-fv 5266 df-ov 5925 df-inn 8991 df-2 9049 df-3 9050 df-ndx 12681 df-slot 12682 df-mulr 12769 | 
| This theorem is referenced by: rngmulrg 12815 ressmulrg 12822 srngmulrd 12826 ipsmulrd 12856 prdsex 12940 imasex 12948 imasival 12949 imasbas 12950 imasplusg 12951 imasmulr 12952 imasmulfn 12963 imasmulval 12964 imasmulf 12965 qusmulval 12980 qusmulf 12981 fnmgp 13478 mgpvalg 13479 mgpplusgg 13480 mgpex 13481 mgpbasg 13482 mgpscag 13483 mgptsetg 13484 mgpdsg 13486 mgpress 13487 isrng 13490 issrg 13521 isring 13556 ring1 13615 opprvalg 13625 opprmulfvalg 13626 opprex 13629 opprsllem 13630 subrngintm 13768 islmod 13847 rmodislmodlem 13906 sraval 13993 sralemg 13994 sramulrg 13997 srascag 13998 sravscag 13999 sraipg 14000 sraex 14002 crngridl 14086 mpocnfldmul 14119 zlmmulrg 14187 znmul 14198 psrval 14220 fnpsr 14221 | 
| Copyright terms: Public domain | W3C validator |