| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulrslid | GIF version | ||
| Description: Slot property of .r. (Contributed by Jim Kingdon, 3-Feb-2023.) |
| Ref | Expression |
|---|---|
| mulrslid | ⊢ (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mulr 12796 | . 2 ⊢ .r = Slot 3 | |
| 2 | 3nn 9172 | . 2 ⊢ 3 ∈ ℕ | |
| 3 | 1, 2 | ndxslid 12730 | 1 ⊢ (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1364 ∈ wcel 2167 ‘cfv 5259 ℕcn 9009 3c3 9061 ndxcnx 12702 Slot cslot 12704 .rcmulr 12783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-cnex 7989 ax-resscn 7990 ax-1re 7992 ax-addrcl 7995 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-iota 5220 df-fun 5261 df-fv 5267 df-ov 5928 df-inn 9010 df-2 9068 df-3 9069 df-ndx 12708 df-slot 12709 df-mulr 12796 |
| This theorem is referenced by: rngmulrg 12842 ressmulrg 12849 srngmulrd 12853 ipsmulrd 12883 prdsex 12973 prdsval 12977 prdsmulr 12982 prdsmulrfval 12990 imasex 13009 imasival 13010 imasbas 13011 imasplusg 13012 imasmulr 13013 imasmulfn 13024 imasmulval 13025 imasmulf 13026 qusmulval 13041 qusmulf 13042 fnmgp 13556 mgpvalg 13557 mgpplusgg 13558 mgpex 13559 mgpbasg 13560 mgpscag 13561 mgptsetg 13562 mgpdsg 13564 mgpress 13565 isrng 13568 issrg 13599 isring 13634 ring1 13693 opprvalg 13703 opprmulfvalg 13704 opprex 13707 opprsllem 13708 subrngintm 13846 islmod 13925 rmodislmodlem 13984 sraval 14071 sralemg 14072 sramulrg 14075 srascag 14076 sravscag 14077 sraipg 14078 sraex 14080 crngridl 14164 mpocnfldmul 14197 zlmmulrg 14265 znmul 14276 psrval 14298 fnpsr 14299 |
| Copyright terms: Public domain | W3C validator |