Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mulrslid | GIF version |
Description: Slot property of .r. (Contributed by Jim Kingdon, 3-Feb-2023.) |
Ref | Expression |
---|---|
mulrslid | ⊢ (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mulr 12226 | . 2 ⊢ .r = Slot 3 | |
2 | 3nn 8978 | . 2 ⊢ 3 ∈ ℕ | |
3 | 1, 2 | ndxslid 12175 | 1 ⊢ (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1335 ∈ wcel 2128 ‘cfv 5167 ℕcn 8816 3c3 8868 ndxcnx 12147 Slot cslot 12149 .rcmulr 12213 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-cnex 7806 ax-resscn 7807 ax-1re 7809 ax-addrcl 7812 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-sbc 2938 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4252 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-res 4595 df-iota 5132 df-fun 5169 df-fv 5175 df-ov 5821 df-inn 8817 df-2 8875 df-3 8876 df-ndx 12153 df-slot 12154 df-mulr 12226 |
This theorem is referenced by: rngmulrg 12268 srngmulrd 12275 ipsmulrd 12294 |
Copyright terms: Public domain | W3C validator |