ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulrndx GIF version

Theorem mulrndx 12750
Description: Index value of the df-mulr 12712 slot. (Contributed by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
mulrndx (.r‘ndx) = 3

Proof of Theorem mulrndx
StepHypRef Expression
1 df-mulr 12712 . 2 .r = Slot 3
2 3nn 9147 . 2 3 ∈ ℕ
31, 2ndxarg 12644 1 (.r‘ndx) = 3
Colors of variables: wff set class
Syntax hints:   = wceq 1364  cfv 5255  3c3 9036  ndxcnx 12618  .rcmulr 12699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-iota 5216  df-fun 5257  df-fv 5263  df-ov 5922  df-inn 8985  df-2 9043  df-3 9044  df-ndx 12624  df-slot 12625  df-mulr 12712
This theorem is referenced by:  plusgndxnmulrndx  12753  basendxnmulrndx  12754  rngstrg  12755  starvndxnmulrndx  12764  scandxnmulrndx  12776  vscandxnmulrndx  12781  ipndxnmulrndx  12794  tsetndxnmulrndx  12813  plendxnmulrndx  12827  dsndxnmulrndx  12838  slotsdifunifndx  12848
  Copyright terms: Public domain W3C validator