![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 8p8e16 | GIF version |
Description: 8 + 8 = 16. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
8p8e16 | ⊢ (8 + 8) = ;16 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 8nn0 9217 | . 2 ⊢ 8 ∈ ℕ0 | |
2 | 7nn0 9216 | . 2 ⊢ 7 ∈ ℕ0 | |
3 | 5nn0 9214 | . 2 ⊢ 5 ∈ ℕ0 | |
4 | df-8 9002 | . 2 ⊢ 8 = (7 + 1) | |
5 | df-6 9000 | . 2 ⊢ 6 = (5 + 1) | |
6 | 8p7e15 9486 | . 2 ⊢ (8 + 7) = ;15 | |
7 | 1, 2, 3, 4, 5, 6 | 6p5lem 9471 | 1 ⊢ (8 + 8) = ;16 |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 (class class class)co 5891 1c1 7830 + caddc 7832 5c5 8991 6c6 8992 7c7 8993 8c8 8994 ;cdc 9402 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4189 ax-pr 4224 ax-setind 4551 ax-cnex 7920 ax-resscn 7921 ax-1cn 7922 ax-1re 7923 ax-icn 7924 ax-addcl 7925 ax-addrcl 7926 ax-mulcl 7927 ax-addcom 7929 ax-mulcom 7930 ax-addass 7931 ax-mulass 7932 ax-distr 7933 ax-i2m1 7934 ax-1rid 7936 ax-0id 7937 ax-rnegex 7938 ax-cnre 7940 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-br 4019 df-opab 4080 df-id 4308 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-iota 5193 df-fun 5233 df-fv 5239 df-riota 5847 df-ov 5894 df-oprab 5895 df-mpo 5896 df-sub 8148 df-inn 8938 df-2 8996 df-3 8997 df-4 8998 df-5 8999 df-6 9000 df-7 9001 df-8 9002 df-9 9003 df-n0 9195 df-dec 9403 |
This theorem is referenced by: 8t2e16 9516 8t7e56 9521 |
Copyright terms: Public domain | W3C validator |