| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > distrpig | GIF version | ||
| Description: Multiplication of positive integers is distributive. (Contributed by Jim Kingdon, 26-Aug-2019.) |
| Ref | Expression |
|---|---|
| distrpig | ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → (𝐴 ·N (𝐵 +N 𝐶)) = ((𝐴 ·N 𝐵) +N (𝐴 ·N 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pinn 7422 | . . 3 ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) | |
| 2 | pinn 7422 | . . 3 ⊢ (𝐵 ∈ N → 𝐵 ∈ ω) | |
| 3 | pinn 7422 | . . 3 ⊢ (𝐶 ∈ N → 𝐶 ∈ ω) | |
| 4 | nndi 6572 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴 ·o (𝐵 +o 𝐶)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝐶))) | |
| 5 | 1, 2, 3, 4 | syl3an 1292 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → (𝐴 ·o (𝐵 +o 𝐶)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝐶))) |
| 6 | addclpi 7440 | . . . . 5 ⊢ ((𝐵 ∈ N ∧ 𝐶 ∈ N) → (𝐵 +N 𝐶) ∈ N) | |
| 7 | mulpiord 7430 | . . . . 5 ⊢ ((𝐴 ∈ N ∧ (𝐵 +N 𝐶) ∈ N) → (𝐴 ·N (𝐵 +N 𝐶)) = (𝐴 ·o (𝐵 +N 𝐶))) | |
| 8 | 6, 7 | sylan2 286 | . . . 4 ⊢ ((𝐴 ∈ N ∧ (𝐵 ∈ N ∧ 𝐶 ∈ N)) → (𝐴 ·N (𝐵 +N 𝐶)) = (𝐴 ·o (𝐵 +N 𝐶))) |
| 9 | addpiord 7429 | . . . . . 6 ⊢ ((𝐵 ∈ N ∧ 𝐶 ∈ N) → (𝐵 +N 𝐶) = (𝐵 +o 𝐶)) | |
| 10 | 9 | oveq2d 5960 | . . . . 5 ⊢ ((𝐵 ∈ N ∧ 𝐶 ∈ N) → (𝐴 ·o (𝐵 +N 𝐶)) = (𝐴 ·o (𝐵 +o 𝐶))) |
| 11 | 10 | adantl 277 | . . . 4 ⊢ ((𝐴 ∈ N ∧ (𝐵 ∈ N ∧ 𝐶 ∈ N)) → (𝐴 ·o (𝐵 +N 𝐶)) = (𝐴 ·o (𝐵 +o 𝐶))) |
| 12 | 8, 11 | eqtrd 2238 | . . 3 ⊢ ((𝐴 ∈ N ∧ (𝐵 ∈ N ∧ 𝐶 ∈ N)) → (𝐴 ·N (𝐵 +N 𝐶)) = (𝐴 ·o (𝐵 +o 𝐶))) |
| 13 | 12 | 3impb 1202 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → (𝐴 ·N (𝐵 +N 𝐶)) = (𝐴 ·o (𝐵 +o 𝐶))) |
| 14 | mulclpi 7441 | . . . . 5 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·N 𝐵) ∈ N) | |
| 15 | mulclpi 7441 | . . . . 5 ⊢ ((𝐴 ∈ N ∧ 𝐶 ∈ N) → (𝐴 ·N 𝐶) ∈ N) | |
| 16 | addpiord 7429 | . . . . 5 ⊢ (((𝐴 ·N 𝐵) ∈ N ∧ (𝐴 ·N 𝐶) ∈ N) → ((𝐴 ·N 𝐵) +N (𝐴 ·N 𝐶)) = ((𝐴 ·N 𝐵) +o (𝐴 ·N 𝐶))) | |
| 17 | 14, 15, 16 | syl2an 289 | . . . 4 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ (𝐴 ∈ N ∧ 𝐶 ∈ N)) → ((𝐴 ·N 𝐵) +N (𝐴 ·N 𝐶)) = ((𝐴 ·N 𝐵) +o (𝐴 ·N 𝐶))) |
| 18 | mulpiord 7430 | . . . . 5 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·N 𝐵) = (𝐴 ·o 𝐵)) | |
| 19 | mulpiord 7430 | . . . . 5 ⊢ ((𝐴 ∈ N ∧ 𝐶 ∈ N) → (𝐴 ·N 𝐶) = (𝐴 ·o 𝐶)) | |
| 20 | 18, 19 | oveqan12d 5963 | . . . 4 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ (𝐴 ∈ N ∧ 𝐶 ∈ N)) → ((𝐴 ·N 𝐵) +o (𝐴 ·N 𝐶)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝐶))) |
| 21 | 17, 20 | eqtrd 2238 | . . 3 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ (𝐴 ∈ N ∧ 𝐶 ∈ N)) → ((𝐴 ·N 𝐵) +N (𝐴 ·N 𝐶)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝐶))) |
| 22 | 21 | 3impdi 1306 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → ((𝐴 ·N 𝐵) +N (𝐴 ·N 𝐶)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝐶))) |
| 23 | 5, 13, 22 | 3eqtr4d 2248 | 1 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → (𝐴 ·N (𝐵 +N 𝐶)) = ((𝐴 ·N 𝐵) +N (𝐴 ·N 𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 = wceq 1373 ∈ wcel 2176 ωcom 4638 (class class class)co 5944 +o coa 6499 ·o comu 6500 Ncnpi 7385 +N cpli 7386 ·N cmi 7387 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-iord 4413 df-on 4415 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-recs 6391 df-irdg 6456 df-oadd 6506 df-omul 6507 df-ni 7417 df-pli 7418 df-mi 7419 |
| This theorem is referenced by: addcmpblnq 7480 addassnqg 7495 distrnqg 7500 ltanqg 7513 ltexnqq 7521 |
| Copyright terms: Public domain | W3C validator |