ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  distrpig GIF version

Theorem distrpig 7361
Description: Multiplication of positive integers is distributive. (Contributed by Jim Kingdon, 26-Aug-2019.)
Assertion
Ref Expression
distrpig ((𝐴N𝐵N𝐶N) → (𝐴 ·N (𝐵 +N 𝐶)) = ((𝐴 ·N 𝐵) +N (𝐴 ·N 𝐶)))

Proof of Theorem distrpig
StepHypRef Expression
1 pinn 7337 . . 3 (𝐴N𝐴 ∈ ω)
2 pinn 7337 . . 3 (𝐵N𝐵 ∈ ω)
3 pinn 7337 . . 3 (𝐶N𝐶 ∈ ω)
4 nndi 6510 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴 ·o (𝐵 +o 𝐶)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝐶)))
51, 2, 3, 4syl3an 1291 . 2 ((𝐴N𝐵N𝐶N) → (𝐴 ·o (𝐵 +o 𝐶)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝐶)))
6 addclpi 7355 . . . . 5 ((𝐵N𝐶N) → (𝐵 +N 𝐶) ∈ N)
7 mulpiord 7345 . . . . 5 ((𝐴N ∧ (𝐵 +N 𝐶) ∈ N) → (𝐴 ·N (𝐵 +N 𝐶)) = (𝐴 ·o (𝐵 +N 𝐶)))
86, 7sylan2 286 . . . 4 ((𝐴N ∧ (𝐵N𝐶N)) → (𝐴 ·N (𝐵 +N 𝐶)) = (𝐴 ·o (𝐵 +N 𝐶)))
9 addpiord 7344 . . . . . 6 ((𝐵N𝐶N) → (𝐵 +N 𝐶) = (𝐵 +o 𝐶))
109oveq2d 5911 . . . . 5 ((𝐵N𝐶N) → (𝐴 ·o (𝐵 +N 𝐶)) = (𝐴 ·o (𝐵 +o 𝐶)))
1110adantl 277 . . . 4 ((𝐴N ∧ (𝐵N𝐶N)) → (𝐴 ·o (𝐵 +N 𝐶)) = (𝐴 ·o (𝐵 +o 𝐶)))
128, 11eqtrd 2222 . . 3 ((𝐴N ∧ (𝐵N𝐶N)) → (𝐴 ·N (𝐵 +N 𝐶)) = (𝐴 ·o (𝐵 +o 𝐶)))
13123impb 1201 . 2 ((𝐴N𝐵N𝐶N) → (𝐴 ·N (𝐵 +N 𝐶)) = (𝐴 ·o (𝐵 +o 𝐶)))
14 mulclpi 7356 . . . . 5 ((𝐴N𝐵N) → (𝐴 ·N 𝐵) ∈ N)
15 mulclpi 7356 . . . . 5 ((𝐴N𝐶N) → (𝐴 ·N 𝐶) ∈ N)
16 addpiord 7344 . . . . 5 (((𝐴 ·N 𝐵) ∈ N ∧ (𝐴 ·N 𝐶) ∈ N) → ((𝐴 ·N 𝐵) +N (𝐴 ·N 𝐶)) = ((𝐴 ·N 𝐵) +o (𝐴 ·N 𝐶)))
1714, 15, 16syl2an 289 . . . 4 (((𝐴N𝐵N) ∧ (𝐴N𝐶N)) → ((𝐴 ·N 𝐵) +N (𝐴 ·N 𝐶)) = ((𝐴 ·N 𝐵) +o (𝐴 ·N 𝐶)))
18 mulpiord 7345 . . . . 5 ((𝐴N𝐵N) → (𝐴 ·N 𝐵) = (𝐴 ·o 𝐵))
19 mulpiord 7345 . . . . 5 ((𝐴N𝐶N) → (𝐴 ·N 𝐶) = (𝐴 ·o 𝐶))
2018, 19oveqan12d 5914 . . . 4 (((𝐴N𝐵N) ∧ (𝐴N𝐶N)) → ((𝐴 ·N 𝐵) +o (𝐴 ·N 𝐶)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝐶)))
2117, 20eqtrd 2222 . . 3 (((𝐴N𝐵N) ∧ (𝐴N𝐶N)) → ((𝐴 ·N 𝐵) +N (𝐴 ·N 𝐶)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝐶)))
22213impdi 1304 . 2 ((𝐴N𝐵N𝐶N) → ((𝐴 ·N 𝐵) +N (𝐴 ·N 𝐶)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝐶)))
235, 13, 223eqtr4d 2232 1 ((𝐴N𝐵N𝐶N) → (𝐴 ·N (𝐵 +N 𝐶)) = ((𝐴 ·N 𝐵) +N (𝐴 ·N 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2160  ωcom 4607  (class class class)co 5895   +o coa 6437   ·o comu 6438  Ncnpi 7300   +N cpli 7301   ·N cmi 7302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-iord 4384  df-on 4386  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-ov 5898  df-oprab 5899  df-mpo 5900  df-1st 6164  df-2nd 6165  df-recs 6329  df-irdg 6394  df-oadd 6444  df-omul 6445  df-ni 7332  df-pli 7333  df-mi 7334
This theorem is referenced by:  addcmpblnq  7395  addassnqg  7410  distrnqg  7415  ltanqg  7428  ltexnqq  7436
  Copyright terms: Public domain W3C validator