ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  distrpig GIF version

Theorem distrpig 7165
Description: Multiplication of positive integers is distributive. (Contributed by Jim Kingdon, 26-Aug-2019.)
Assertion
Ref Expression
distrpig ((𝐴N𝐵N𝐶N) → (𝐴 ·N (𝐵 +N 𝐶)) = ((𝐴 ·N 𝐵) +N (𝐴 ·N 𝐶)))

Proof of Theorem distrpig
StepHypRef Expression
1 pinn 7141 . . 3 (𝐴N𝐴 ∈ ω)
2 pinn 7141 . . 3 (𝐵N𝐵 ∈ ω)
3 pinn 7141 . . 3 (𝐶N𝐶 ∈ ω)
4 nndi 6390 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴 ·o (𝐵 +o 𝐶)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝐶)))
51, 2, 3, 4syl3an 1259 . 2 ((𝐴N𝐵N𝐶N) → (𝐴 ·o (𝐵 +o 𝐶)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝐶)))
6 addclpi 7159 . . . . 5 ((𝐵N𝐶N) → (𝐵 +N 𝐶) ∈ N)
7 mulpiord 7149 . . . . 5 ((𝐴N ∧ (𝐵 +N 𝐶) ∈ N) → (𝐴 ·N (𝐵 +N 𝐶)) = (𝐴 ·o (𝐵 +N 𝐶)))
86, 7sylan2 284 . . . 4 ((𝐴N ∧ (𝐵N𝐶N)) → (𝐴 ·N (𝐵 +N 𝐶)) = (𝐴 ·o (𝐵 +N 𝐶)))
9 addpiord 7148 . . . . . 6 ((𝐵N𝐶N) → (𝐵 +N 𝐶) = (𝐵 +o 𝐶))
109oveq2d 5798 . . . . 5 ((𝐵N𝐶N) → (𝐴 ·o (𝐵 +N 𝐶)) = (𝐴 ·o (𝐵 +o 𝐶)))
1110adantl 275 . . . 4 ((𝐴N ∧ (𝐵N𝐶N)) → (𝐴 ·o (𝐵 +N 𝐶)) = (𝐴 ·o (𝐵 +o 𝐶)))
128, 11eqtrd 2173 . . 3 ((𝐴N ∧ (𝐵N𝐶N)) → (𝐴 ·N (𝐵 +N 𝐶)) = (𝐴 ·o (𝐵 +o 𝐶)))
13123impb 1178 . 2 ((𝐴N𝐵N𝐶N) → (𝐴 ·N (𝐵 +N 𝐶)) = (𝐴 ·o (𝐵 +o 𝐶)))
14 mulclpi 7160 . . . . 5 ((𝐴N𝐵N) → (𝐴 ·N 𝐵) ∈ N)
15 mulclpi 7160 . . . . 5 ((𝐴N𝐶N) → (𝐴 ·N 𝐶) ∈ N)
16 addpiord 7148 . . . . 5 (((𝐴 ·N 𝐵) ∈ N ∧ (𝐴 ·N 𝐶) ∈ N) → ((𝐴 ·N 𝐵) +N (𝐴 ·N 𝐶)) = ((𝐴 ·N 𝐵) +o (𝐴 ·N 𝐶)))
1714, 15, 16syl2an 287 . . . 4 (((𝐴N𝐵N) ∧ (𝐴N𝐶N)) → ((𝐴 ·N 𝐵) +N (𝐴 ·N 𝐶)) = ((𝐴 ·N 𝐵) +o (𝐴 ·N 𝐶)))
18 mulpiord 7149 . . . . 5 ((𝐴N𝐵N) → (𝐴 ·N 𝐵) = (𝐴 ·o 𝐵))
19 mulpiord 7149 . . . . 5 ((𝐴N𝐶N) → (𝐴 ·N 𝐶) = (𝐴 ·o 𝐶))
2018, 19oveqan12d 5801 . . . 4 (((𝐴N𝐵N) ∧ (𝐴N𝐶N)) → ((𝐴 ·N 𝐵) +o (𝐴 ·N 𝐶)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝐶)))
2117, 20eqtrd 2173 . . 3 (((𝐴N𝐵N) ∧ (𝐴N𝐶N)) → ((𝐴 ·N 𝐵) +N (𝐴 ·N 𝐶)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝐶)))
22213impdi 1272 . 2 ((𝐴N𝐵N𝐶N) → ((𝐴 ·N 𝐵) +N (𝐴 ·N 𝐶)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝐶)))
235, 13, 223eqtr4d 2183 1 ((𝐴N𝐵N𝐶N) → (𝐴 ·N (𝐵 +N 𝐶)) = ((𝐴 ·N 𝐵) +N (𝐴 ·N 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 963   = wceq 1332  wcel 1481  ωcom 4512  (class class class)co 5782   +o coa 6318   ·o comu 6319  Ncnpi 7104   +N cpli 7105   ·N cmi 7106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-oadd 6325  df-omul 6326  df-ni 7136  df-pli 7137  df-mi 7138
This theorem is referenced by:  addcmpblnq  7199  addassnqg  7214  distrnqg  7219  ltanqg  7232  ltexnqq  7240
  Copyright terms: Public domain W3C validator