ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodp1s GIF version

Theorem fprodp1s 12099
Description: Multiply in the last term in a finite product. (Contributed by Scott Fenton, 27-Dec-2017.)
Hypotheses
Ref Expression
fprodp1s.1 (𝜑𝑁 ∈ (ℤ𝑀))
fprodp1s.2 ((𝜑𝑘 ∈ (𝑀...(𝑁 + 1))) → 𝐴 ∈ ℂ)
Assertion
Ref Expression
fprodp1s (𝜑 → ∏𝑘 ∈ (𝑀...(𝑁 + 1))𝐴 = (∏𝑘 ∈ (𝑀...𝑁)𝐴 · (𝑁 + 1) / 𝑘𝐴))
Distinct variable groups:   𝜑,𝑘   𝑘,𝑀   𝑘,𝑁
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem fprodp1s
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 fprodp1s.1 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
2 fprodp1s.2 . . . . 5 ((𝜑𝑘 ∈ (𝑀...(𝑁 + 1))) → 𝐴 ∈ ℂ)
32ralrimiva 2603 . . . 4 (𝜑 → ∀𝑘 ∈ (𝑀...(𝑁 + 1))𝐴 ∈ ℂ)
4 nfcsb1v 3157 . . . . . 6 𝑘𝑚 / 𝑘𝐴
54nfel1 2383 . . . . 5 𝑘𝑚 / 𝑘𝐴 ∈ ℂ
6 csbeq1a 3133 . . . . . 6 (𝑘 = 𝑚𝐴 = 𝑚 / 𝑘𝐴)
76eleq1d 2298 . . . . 5 (𝑘 = 𝑚 → (𝐴 ∈ ℂ ↔ 𝑚 / 𝑘𝐴 ∈ ℂ))
85, 7rspc 2901 . . . 4 (𝑚 ∈ (𝑀...(𝑁 + 1)) → (∀𝑘 ∈ (𝑀...(𝑁 + 1))𝐴 ∈ ℂ → 𝑚 / 𝑘𝐴 ∈ ℂ))
93, 8mpan9 281 . . 3 ((𝜑𝑚 ∈ (𝑀...(𝑁 + 1))) → 𝑚 / 𝑘𝐴 ∈ ℂ)
10 csbeq1 3127 . . 3 (𝑚 = (𝑁 + 1) → 𝑚 / 𝑘𝐴 = (𝑁 + 1) / 𝑘𝐴)
111, 9, 10fprodp1 12097 . 2 (𝜑 → ∏𝑚 ∈ (𝑀...(𝑁 + 1))𝑚 / 𝑘𝐴 = (∏𝑚 ∈ (𝑀...𝑁)𝑚 / 𝑘𝐴 · (𝑁 + 1) / 𝑘𝐴))
12 nfcv 2372 . . 3 𝑚𝐴
1312, 4, 6cbvprodi 12057 . 2 𝑘 ∈ (𝑀...(𝑁 + 1))𝐴 = ∏𝑚 ∈ (𝑀...(𝑁 + 1))𝑚 / 𝑘𝐴
1412, 4, 6cbvprodi 12057 . . 3 𝑘 ∈ (𝑀...𝑁)𝐴 = ∏𝑚 ∈ (𝑀...𝑁)𝑚 / 𝑘𝐴
1514oveq1i 6004 . 2 (∏𝑘 ∈ (𝑀...𝑁)𝐴 · (𝑁 + 1) / 𝑘𝐴) = (∏𝑚 ∈ (𝑀...𝑁)𝑚 / 𝑘𝐴 · (𝑁 + 1) / 𝑘𝐴)
1611, 13, 153eqtr4g 2287 1 (𝜑 → ∏𝑘 ∈ (𝑀...(𝑁 + 1))𝐴 = (∏𝑘 ∈ (𝑀...𝑁)𝐴 · (𝑁 + 1) / 𝑘𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  wral 2508  csb 3124  cfv 5314  (class class class)co 5994  cc 7985  1c1 7988   + caddc 7990   · cmul 7992  cuz 9710  ...cfz 10192  cprod 12047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-mulrcl 8086  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-precex 8097  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103  ax-pre-mulgt0 8104  ax-pre-mulext 8105  ax-arch 8106  ax-caucvg 8107
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-po 4384  df-iso 4385  df-iord 4454  df-on 4456  df-ilim 4457  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-isom 5323  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-irdg 6506  df-frec 6527  df-1o 6552  df-oadd 6556  df-er 6670  df-en 6878  df-dom 6879  df-fin 6880  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-reap 8710  df-ap 8717  df-div 8808  df-inn 9099  df-2 9157  df-3 9158  df-4 9159  df-n0 9358  df-z 9435  df-uz 9711  df-q 9803  df-rp 9838  df-fz 10193  df-fzo 10327  df-seqfrec 10657  df-exp 10748  df-ihash 10985  df-cj 11339  df-re 11340  df-im 11341  df-rsqrt 11495  df-abs 11496  df-clim 11776  df-proddc 12048
This theorem is referenced by:  fprodabs  12113
  Copyright terms: Public domain W3C validator