![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elovmpowrd | GIF version |
Description: Implications for the value of an operation defined by the maps-to notation with a class abstraction of words as a result having an element. Note that 𝜑 may depend on 𝑧 as well as on 𝑣 and 𝑦. (Contributed by Alexander van der Vekens, 15-Jul-2018.) |
Ref | Expression |
---|---|
elovmpowrd.o | ⊢ 𝑂 = (𝑣 ∈ V, 𝑦 ∈ V ↦ {𝑧 ∈ Word 𝑣 ∣ 𝜑}) |
Ref | Expression |
---|---|
elovmpowrd | ⊢ (𝑍 ∈ (𝑉𝑂𝑌) → (𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ Word 𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elovmpowrd.o | . . . 4 ⊢ 𝑂 = (𝑣 ∈ V, 𝑦 ∈ V ↦ {𝑧 ∈ Word 𝑣 ∣ 𝜑}) | |
2 | csbwrdg 10933 | . . . . . . . 8 ⊢ (𝑣 ∈ V → ⦋𝑣 / 𝑥⦌Word 𝑥 = Word 𝑣) | |
3 | 2 | eqcomd 2199 | . . . . . . 7 ⊢ (𝑣 ∈ V → Word 𝑣 = ⦋𝑣 / 𝑥⦌Word 𝑥) |
4 | 3 | adantr 276 | . . . . . 6 ⊢ ((𝑣 ∈ V ∧ 𝑦 ∈ V) → Word 𝑣 = ⦋𝑣 / 𝑥⦌Word 𝑥) |
5 | 4 | rabeqdv 2754 | . . . . 5 ⊢ ((𝑣 ∈ V ∧ 𝑦 ∈ V) → {𝑧 ∈ Word 𝑣 ∣ 𝜑} = {𝑧 ∈ ⦋𝑣 / 𝑥⦌Word 𝑥 ∣ 𝜑}) |
6 | 5 | mpoeq3ia 5975 | . . . 4 ⊢ (𝑣 ∈ V, 𝑦 ∈ V ↦ {𝑧 ∈ Word 𝑣 ∣ 𝜑}) = (𝑣 ∈ V, 𝑦 ∈ V ↦ {𝑧 ∈ ⦋𝑣 / 𝑥⦌Word 𝑥 ∣ 𝜑}) |
7 | 1, 6 | eqtri 2214 | . . 3 ⊢ 𝑂 = (𝑣 ∈ V, 𝑦 ∈ V ↦ {𝑧 ∈ ⦋𝑣 / 𝑥⦌Word 𝑥 ∣ 𝜑}) |
8 | csbwrdg 10933 | . . . . 5 ⊢ (𝑉 ∈ V → ⦋𝑉 / 𝑥⦌Word 𝑥 = Word 𝑉) | |
9 | wrdexg 10915 | . . . . 5 ⊢ (𝑉 ∈ V → Word 𝑉 ∈ V) | |
10 | 8, 9 | eqeltrd 2270 | . . . 4 ⊢ (𝑉 ∈ V → ⦋𝑉 / 𝑥⦌Word 𝑥 ∈ V) |
11 | 10 | adantr 276 | . . 3 ⊢ ((𝑉 ∈ V ∧ 𝑌 ∈ V) → ⦋𝑉 / 𝑥⦌Word 𝑥 ∈ V) |
12 | 7, 11 | elovmporab1w 6111 | . 2 ⊢ (𝑍 ∈ (𝑉𝑂𝑌) → (𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ ⦋𝑉 / 𝑥⦌Word 𝑥)) |
13 | 8 | eleq2d 2263 | . . . . 5 ⊢ (𝑉 ∈ V → (𝑍 ∈ ⦋𝑉 / 𝑥⦌Word 𝑥 ↔ 𝑍 ∈ Word 𝑉)) |
14 | 13 | adantr 276 | . . . 4 ⊢ ((𝑉 ∈ V ∧ 𝑌 ∈ V) → (𝑍 ∈ ⦋𝑉 / 𝑥⦌Word 𝑥 ↔ 𝑍 ∈ Word 𝑉)) |
15 | id 19 | . . . . 5 ⊢ ((𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ Word 𝑉) → (𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ Word 𝑉)) | |
16 | 15 | 3expia 1207 | . . . 4 ⊢ ((𝑉 ∈ V ∧ 𝑌 ∈ V) → (𝑍 ∈ Word 𝑉 → (𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ Word 𝑉))) |
17 | 14, 16 | sylbid 150 | . . 3 ⊢ ((𝑉 ∈ V ∧ 𝑌 ∈ V) → (𝑍 ∈ ⦋𝑉 / 𝑥⦌Word 𝑥 → (𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ Word 𝑉))) |
18 | 17 | 3impia 1202 | . 2 ⊢ ((𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ ⦋𝑉 / 𝑥⦌Word 𝑥) → (𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ Word 𝑉)) |
19 | 12, 18 | syl 14 | 1 ⊢ (𝑍 ∈ (𝑉𝑂𝑌) → (𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ Word 𝑉)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 {crab 2476 Vcvv 2760 ⦋csb 3080 (class class class)co 5910 ∈ cmpo 5912 Word cword 10904 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4462 ax-setind 4565 ax-iinf 4616 ax-cnex 7953 ax-resscn 7954 ax-1cn 7955 ax-1re 7956 ax-icn 7957 ax-addcl 7958 ax-addrcl 7959 ax-mulcl 7960 ax-addcom 7962 ax-addass 7964 ax-distr 7966 ax-i2m1 7967 ax-0lt1 7968 ax-0id 7970 ax-rnegex 7971 ax-cnre 7973 ax-pre-ltirr 7974 ax-pre-ltwlin 7975 ax-pre-lttrn 7976 ax-pre-apti 7977 ax-pre-ltadd 7978 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4322 df-iord 4395 df-on 4397 df-ilim 4398 df-suc 4400 df-iom 4619 df-xp 4661 df-rel 4662 df-cnv 4663 df-co 4664 df-dm 4665 df-rn 4666 df-res 4667 df-ima 4668 df-iota 5207 df-fun 5248 df-fn 5249 df-f 5250 df-f1 5251 df-fo 5252 df-f1o 5253 df-fv 5254 df-riota 5865 df-ov 5913 df-oprab 5914 df-mpo 5915 df-1st 6184 df-2nd 6185 df-recs 6349 df-frec 6435 df-1o 6460 df-er 6578 df-map 6695 df-en 6786 df-fin 6788 df-pnf 8046 df-mnf 8047 df-xr 8048 df-ltxr 8049 df-le 8050 df-sub 8182 df-neg 8183 df-inn 8973 df-n0 9231 df-z 9308 df-uz 9583 df-fz 10065 df-fzo 10199 df-word 10905 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |