![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > strle2g | GIF version |
Description: Make a structure from a pair. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.) |
Ref | Expression |
---|---|
strle1.i | ⊢ 𝐼 ∈ ℕ |
strle1.a | ⊢ 𝐴 = 𝐼 |
strle2.j | ⊢ 𝐼 < 𝐽 |
strle2.k | ⊢ 𝐽 ∈ ℕ |
strle2.b | ⊢ 𝐵 = 𝐽 |
Ref | Expression |
---|---|
strle2g | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → {⟨𝐴, 𝑋⟩, ⟨𝐵, 𝑌⟩} Struct ⟨𝐼, 𝐽⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pr 3600 | . 2 ⊢ {⟨𝐴, 𝑋⟩, ⟨𝐵, 𝑌⟩} = ({⟨𝐴, 𝑋⟩} ∪ {⟨𝐵, 𝑌⟩}) | |
2 | strle1.i | . . . . 5 ⊢ 𝐼 ∈ ℕ | |
3 | strle1.a | . . . . 5 ⊢ 𝐴 = 𝐼 | |
4 | 2, 3 | strle1g 12565 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → {⟨𝐴, 𝑋⟩} Struct ⟨𝐼, 𝐼⟩) |
5 | 4 | adantr 276 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → {⟨𝐴, 𝑋⟩} Struct ⟨𝐼, 𝐼⟩) |
6 | strle2.k | . . . . 5 ⊢ 𝐽 ∈ ℕ | |
7 | strle2.b | . . . . 5 ⊢ 𝐵 = 𝐽 | |
8 | 6, 7 | strle1g 12565 | . . . 4 ⊢ (𝑌 ∈ 𝑊 → {⟨𝐵, 𝑌⟩} Struct ⟨𝐽, 𝐽⟩) |
9 | 8 | adantl 277 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → {⟨𝐵, 𝑌⟩} Struct ⟨𝐽, 𝐽⟩) |
10 | strle2.j | . . . 4 ⊢ 𝐼 < 𝐽 | |
11 | 10 | a1i 9 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → 𝐼 < 𝐽) |
12 | 5, 9, 11 | strleund 12562 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → ({⟨𝐴, 𝑋⟩} ∪ {⟨𝐵, 𝑌⟩}) Struct ⟨𝐼, 𝐽⟩) |
13 | 1, 12 | eqbrtrid 4039 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → {⟨𝐴, 𝑋⟩, ⟨𝐵, 𝑌⟩} Struct ⟨𝐼, 𝐽⟩) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 ∪ cun 3128 {csn 3593 {cpr 3594 ⟨cop 3596 class class class wbr 4004 < clt 7992 ℕcn 8919 Struct cstr 12458 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-pow 4175 ax-pr 4210 ax-un 4434 ax-setind 4537 ax-cnex 7902 ax-resscn 7903 ax-1cn 7904 ax-1re 7905 ax-icn 7906 ax-addcl 7907 ax-addrcl 7908 ax-mulcl 7909 ax-addcom 7911 ax-addass 7913 ax-distr 7915 ax-i2m1 7916 ax-0lt1 7917 ax-0id 7919 ax-rnegex 7920 ax-cnre 7922 ax-pre-ltirr 7923 ax-pre-ltwlin 7924 ax-pre-lttrn 7925 ax-pre-apti 7926 ax-pre-ltadd 7927 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2740 df-sbc 2964 df-dif 3132 df-un 3134 df-in 3136 df-ss 3143 df-nul 3424 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-int 3846 df-br 4005 df-opab 4066 df-mpt 4067 df-id 4294 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-rn 4638 df-res 4639 df-ima 4640 df-iota 5179 df-fun 5219 df-fn 5220 df-f 5221 df-fv 5225 df-riota 5831 df-ov 5878 df-oprab 5879 df-mpo 5880 df-pnf 7994 df-mnf 7995 df-xr 7996 df-ltxr 7997 df-le 7998 df-sub 8130 df-neg 8131 df-inn 8920 df-n0 9177 df-z 9254 df-uz 9529 df-fz 10009 df-struct 12464 |
This theorem is referenced by: strle3g 12567 2strstrg 12577 |
Copyright terms: Public domain | W3C validator |