| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > strle2g | GIF version | ||
| Description: Make a structure from a pair. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.) | 
| Ref | Expression | 
|---|---|
| strle1.i | ⊢ 𝐼 ∈ ℕ | 
| strle1.a | ⊢ 𝐴 = 𝐼 | 
| strle2.j | ⊢ 𝐼 < 𝐽 | 
| strle2.k | ⊢ 𝐽 ∈ ℕ | 
| strle2.b | ⊢ 𝐵 = 𝐽 | 
| Ref | Expression | 
|---|---|
| strle2g | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → {〈𝐴, 𝑋〉, 〈𝐵, 𝑌〉} Struct 〈𝐼, 𝐽〉) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-pr 3629 | . 2 ⊢ {〈𝐴, 𝑋〉, 〈𝐵, 𝑌〉} = ({〈𝐴, 𝑋〉} ∪ {〈𝐵, 𝑌〉}) | |
| 2 | strle1.i | . . . . 5 ⊢ 𝐼 ∈ ℕ | |
| 3 | strle1.a | . . . . 5 ⊢ 𝐴 = 𝐼 | |
| 4 | 2, 3 | strle1g 12784 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → {〈𝐴, 𝑋〉} Struct 〈𝐼, 𝐼〉) | 
| 5 | 4 | adantr 276 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → {〈𝐴, 𝑋〉} Struct 〈𝐼, 𝐼〉) | 
| 6 | strle2.k | . . . . 5 ⊢ 𝐽 ∈ ℕ | |
| 7 | strle2.b | . . . . 5 ⊢ 𝐵 = 𝐽 | |
| 8 | 6, 7 | strle1g 12784 | . . . 4 ⊢ (𝑌 ∈ 𝑊 → {〈𝐵, 𝑌〉} Struct 〈𝐽, 𝐽〉) | 
| 9 | 8 | adantl 277 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → {〈𝐵, 𝑌〉} Struct 〈𝐽, 𝐽〉) | 
| 10 | strle2.j | . . . 4 ⊢ 𝐼 < 𝐽 | |
| 11 | 10 | a1i 9 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → 𝐼 < 𝐽) | 
| 12 | 5, 9, 11 | strleund 12781 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → ({〈𝐴, 𝑋〉} ∪ {〈𝐵, 𝑌〉}) Struct 〈𝐼, 𝐽〉) | 
| 13 | 1, 12 | eqbrtrid 4068 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → {〈𝐴, 𝑋〉, 〈𝐵, 𝑌〉} Struct 〈𝐼, 𝐽〉) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ∪ cun 3155 {csn 3622 {cpr 3623 〈cop 3625 class class class wbr 4033 < clt 8061 ℕcn 8990 Struct cstr 12674 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-n0 9250 df-z 9327 df-uz 9602 df-fz 10084 df-struct 12680 | 
| This theorem is referenced by: strle3g 12786 2strstrg 12796 | 
| Copyright terms: Public domain | W3C validator |