| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > strle2g | GIF version | ||
| Description: Make a structure from a pair. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.) |
| Ref | Expression |
|---|---|
| strle1.i | ⊢ 𝐼 ∈ ℕ |
| strle1.a | ⊢ 𝐴 = 𝐼 |
| strle2.j | ⊢ 𝐼 < 𝐽 |
| strle2.k | ⊢ 𝐽 ∈ ℕ |
| strle2.b | ⊢ 𝐵 = 𝐽 |
| Ref | Expression |
|---|---|
| strle2g | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → {〈𝐴, 𝑋〉, 〈𝐵, 𝑌〉} Struct 〈𝐼, 𝐽〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pr 3653 | . 2 ⊢ {〈𝐴, 𝑋〉, 〈𝐵, 𝑌〉} = ({〈𝐴, 𝑋〉} ∪ {〈𝐵, 𝑌〉}) | |
| 2 | strle1.i | . . . . 5 ⊢ 𝐼 ∈ ℕ | |
| 3 | strle1.a | . . . . 5 ⊢ 𝐴 = 𝐼 | |
| 4 | 2, 3 | strle1g 13105 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → {〈𝐴, 𝑋〉} Struct 〈𝐼, 𝐼〉) |
| 5 | 4 | adantr 276 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → {〈𝐴, 𝑋〉} Struct 〈𝐼, 𝐼〉) |
| 6 | strle2.k | . . . . 5 ⊢ 𝐽 ∈ ℕ | |
| 7 | strle2.b | . . . . 5 ⊢ 𝐵 = 𝐽 | |
| 8 | 6, 7 | strle1g 13105 | . . . 4 ⊢ (𝑌 ∈ 𝑊 → {〈𝐵, 𝑌〉} Struct 〈𝐽, 𝐽〉) |
| 9 | 8 | adantl 277 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → {〈𝐵, 𝑌〉} Struct 〈𝐽, 𝐽〉) |
| 10 | strle2.j | . . . 4 ⊢ 𝐼 < 𝐽 | |
| 11 | 10 | a1i 9 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → 𝐼 < 𝐽) |
| 12 | 5, 9, 11 | strleund 13102 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → ({〈𝐴, 𝑋〉} ∪ {〈𝐵, 𝑌〉}) Struct 〈𝐼, 𝐽〉) |
| 13 | 1, 12 | eqbrtrid 4097 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → {〈𝐴, 𝑋〉, 〈𝐵, 𝑌〉} Struct 〈𝐼, 𝐽〉) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1375 ∈ wcel 2180 ∪ cun 3175 {csn 3646 {cpr 3647 〈cop 3649 class class class wbr 4062 < clt 8149 ℕcn 9078 Struct cstr 12994 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-addcom 8067 ax-addass 8069 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-0id 8075 ax-rnegex 8076 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-apti 8082 ax-pre-ltadd 8083 |
| This theorem depends on definitions: df-bi 117 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-inn 9079 df-n0 9338 df-z 9415 df-uz 9691 df-fz 10173 df-struct 13000 |
| This theorem is referenced by: strle3g 13107 2strstrndx 13117 2strstrg 13118 prdsvalstrd 13270 |
| Copyright terms: Public domain | W3C validator |