![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dom2d | GIF version |
Description: A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. (Contributed by NM, 24-Jul-2004.) (Revised by Mario Carneiro, 20-May-2013.) |
Ref | Expression |
---|---|
dom2d.1 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵)) |
dom2d.2 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐶 = 𝐷 ↔ 𝑥 = 𝑦))) |
Ref | Expression |
---|---|
dom2d | ⊢ (𝜑 → (𝐵 ∈ 𝑅 → 𝐴 ≼ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dom2d.1 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵)) | |
2 | dom2d.2 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐶 = 𝐷 ↔ 𝑥 = 𝑦))) | |
3 | 1, 2 | dom2lem 6569 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶):𝐴–1-1→𝐵) |
4 | f1domg 6555 | . 2 ⊢ (𝐵 ∈ 𝑅 → ((𝑥 ∈ 𝐴 ↦ 𝐶):𝐴–1-1→𝐵 → 𝐴 ≼ 𝐵)) | |
5 | 3, 4 | syl5com 29 | 1 ⊢ (𝜑 → (𝐵 ∈ 𝑅 → 𝐴 ≼ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1296 ∈ wcel 1445 class class class wbr 3867 ↦ cmpt 3921 –1-1→wf1 5046 ≼ cdom 6536 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-13 1456 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-coll 3975 ax-sep 3978 ax-pow 4030 ax-pr 4060 ax-un 4284 |
This theorem depends on definitions: df-bi 116 df-3an 929 df-tru 1299 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ral 2375 df-rex 2376 df-reu 2377 df-rab 2379 df-v 2635 df-sbc 2855 df-csb 2948 df-un 3017 df-in 3019 df-ss 3026 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-uni 3676 df-iun 3754 df-br 3868 df-opab 3922 df-mpt 3923 df-id 4144 df-xp 4473 df-rel 4474 df-cnv 4475 df-co 4476 df-dm 4477 df-rn 4478 df-res 4479 df-ima 4480 df-iota 5014 df-fun 5051 df-fn 5052 df-f 5053 df-f1 5054 df-fo 5055 df-f1o 5056 df-fv 5057 df-dom 6539 |
This theorem is referenced by: dom2 6572 |
Copyright terms: Public domain | W3C validator |