ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsvalmod GIF version

Theorem lgsvalmod 14087
Description: The Legendre symbol is equivalent to 𝑎↑((𝑝 − 1) / 2), mod 𝑝. This theorem is also called "Euler's criterion", see theorem 9.2 in [ApostolNT] p. 180, or a representation of Euler's criterion using the Legendre symbol, (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
lgsvalmod ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) mod 𝑃) = ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃))

Proof of Theorem lgsvalmod
StepHypRef Expression
1 eldifi 3257 . . . . . . . 8 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
21adantl 277 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 𝑃 ∈ ℙ)
3 prmz 12094 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
42, 3syl 14 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 𝑃 ∈ ℤ)
5 lgscl 14082 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝐴 /L 𝑃) ∈ ℤ)
64, 5syldan 282 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝐴 /L 𝑃) ∈ ℤ)
76peano2zd 9367 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) + 1) ∈ ℤ)
8 zq 9615 . . . 4 (((𝐴 /L 𝑃) + 1) ∈ ℤ → ((𝐴 /L 𝑃) + 1) ∈ ℚ)
97, 8syl 14 . . 3 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) + 1) ∈ ℚ)
10 oddprm 12242 . . . . . . . 8 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ)
1110adantl 277 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝑃 − 1) / 2) ∈ ℕ)
1211nnnn0d 9218 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝑃 − 1) / 2) ∈ ℕ0)
13 zexpcl 10521 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℕ0) → (𝐴↑((𝑃 − 1) / 2)) ∈ ℤ)
1412, 13syldan 282 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝐴↑((𝑃 − 1) / 2)) ∈ ℤ)
1514peano2zd 9367 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴↑((𝑃 − 1) / 2)) + 1) ∈ ℤ)
16 zq 9615 . . . 4 (((𝐴↑((𝑃 − 1) / 2)) + 1) ∈ ℤ → ((𝐴↑((𝑃 − 1) / 2)) + 1) ∈ ℚ)
1715, 16syl 14 . . 3 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴↑((𝑃 − 1) / 2)) + 1) ∈ ℚ)
18 neg1z 9274 . . . 4 -1 ∈ ℤ
19 zq 9615 . . . 4 (-1 ∈ ℤ → -1 ∈ ℚ)
2018, 19mp1i 10 . . 3 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → -1 ∈ ℚ)
21 prmnn 12093 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
222, 21syl 14 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 𝑃 ∈ ℕ)
23 nnq 9622 . . . 4 (𝑃 ∈ ℕ → 𝑃 ∈ ℚ)
2422, 23syl 14 . . 3 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 𝑃 ∈ ℚ)
2522nngt0d 8952 . . 3 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 0 < 𝑃)
26 lgsval3 14086 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝐴 /L 𝑃) = ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1))
2726eqcomd 2183 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) = (𝐴 /L 𝑃))
2815, 22zmodcld 10331 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) ∈ ℕ0)
2928nn0cnd 9220 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) ∈ ℂ)
30 1cnd 7964 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 1 ∈ ℂ)
316zred 9364 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝐴 /L 𝑃) ∈ ℝ)
3231recnd 7976 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝐴 /L 𝑃) ∈ ℂ)
3329, 30, 32subadd2d 8277 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) = (𝐴 /L 𝑃) ↔ ((𝐴 /L 𝑃) + 1) = (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃)))
3427, 33mpbid 147 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) + 1) = (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃))
3534oveq1d 5884 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((𝐴 /L 𝑃) + 1) mod 𝑃) = ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) mod 𝑃))
36 modqabs2 10344 . . . . 5 ((((𝐴↑((𝑃 − 1) / 2)) + 1) ∈ ℚ ∧ 𝑃 ∈ ℚ ∧ 0 < 𝑃) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) mod 𝑃) = (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃))
3717, 24, 25, 36syl3anc 1238 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) mod 𝑃) = (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃))
3835, 37eqtrd 2210 . . 3 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((𝐴 /L 𝑃) + 1) mod 𝑃) = (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃))
399, 17, 20, 24, 25, 38modqadd1 10347 . 2 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((((𝐴 /L 𝑃) + 1) + -1) mod 𝑃) = ((((𝐴↑((𝑃 − 1) / 2)) + 1) + -1) mod 𝑃))
40 peano2re 8083 . . . . . . 7 ((𝐴 /L 𝑃) ∈ ℝ → ((𝐴 /L 𝑃) + 1) ∈ ℝ)
4131, 40syl 14 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) + 1) ∈ ℝ)
4241recnd 7976 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) + 1) ∈ ℂ)
43 ax-1cn 7895 . . . . 5 1 ∈ ℂ
44 negsub 8195 . . . . 5 ((((𝐴 /L 𝑃) + 1) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝐴 /L 𝑃) + 1) + -1) = (((𝐴 /L 𝑃) + 1) − 1))
4542, 43, 44sylancl 413 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((𝐴 /L 𝑃) + 1) + -1) = (((𝐴 /L 𝑃) + 1) − 1))
46 pncan 8153 . . . . 5 (((𝐴 /L 𝑃) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝐴 /L 𝑃) + 1) − 1) = (𝐴 /L 𝑃))
4732, 43, 46sylancl 413 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((𝐴 /L 𝑃) + 1) − 1) = (𝐴 /L 𝑃))
4845, 47eqtrd 2210 . . 3 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((𝐴 /L 𝑃) + 1) + -1) = (𝐴 /L 𝑃))
4948oveq1d 5884 . 2 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((((𝐴 /L 𝑃) + 1) + -1) mod 𝑃) = ((𝐴 /L 𝑃) mod 𝑃))
5014zred 9364 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝐴↑((𝑃 − 1) / 2)) ∈ ℝ)
51 peano2re 8083 . . . . . . 7 ((𝐴↑((𝑃 − 1) / 2)) ∈ ℝ → ((𝐴↑((𝑃 − 1) / 2)) + 1) ∈ ℝ)
5250, 51syl 14 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴↑((𝑃 − 1) / 2)) + 1) ∈ ℝ)
5352recnd 7976 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴↑((𝑃 − 1) / 2)) + 1) ∈ ℂ)
54 negsub 8195 . . . . 5 ((((𝐴↑((𝑃 − 1) / 2)) + 1) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝐴↑((𝑃 − 1) / 2)) + 1) + -1) = (((𝐴↑((𝑃 − 1) / 2)) + 1) − 1))
5553, 43, 54sylancl 413 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((𝐴↑((𝑃 − 1) / 2)) + 1) + -1) = (((𝐴↑((𝑃 − 1) / 2)) + 1) − 1))
5650recnd 7976 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝐴↑((𝑃 − 1) / 2)) ∈ ℂ)
57 pncan 8153 . . . . 5 (((𝐴↑((𝑃 − 1) / 2)) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝐴↑((𝑃 − 1) / 2)) + 1) − 1) = (𝐴↑((𝑃 − 1) / 2)))
5856, 43, 57sylancl 413 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((𝐴↑((𝑃 − 1) / 2)) + 1) − 1) = (𝐴↑((𝑃 − 1) / 2)))
5955, 58eqtrd 2210 . . 3 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((𝐴↑((𝑃 − 1) / 2)) + 1) + -1) = (𝐴↑((𝑃 − 1) / 2)))
6059oveq1d 5884 . 2 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) + -1) mod 𝑃) = ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃))
6139, 49, 603eqtr3d 2218 1 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) mod 𝑃) = ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  cdif 3126  {csn 3591   class class class wbr 4000  (class class class)co 5869  cc 7800  cr 7801  0cc0 7802  1c1 7803   + caddc 7805   < clt 7982  cmin 8118  -cneg 8119   / cdiv 8618  cn 8908  2c2 8959  0cn0 9165  cz 9242  cq 9608   mod cmo 10308  cexp 10505  cprime 12090   /L clgs 14065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-xor 1376  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-frec 6386  df-1o 6411  df-2o 6412  df-oadd 6415  df-er 6529  df-en 6735  df-dom 6736  df-fin 6737  df-sup 6977  df-inf 6978  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-5 8970  df-6 8971  df-7 8972  df-8 8973  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-fz 9996  df-fzo 10129  df-fl 10256  df-mod 10309  df-seqfrec 10432  df-exp 10506  df-ihash 10740  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-clim 11271  df-proddc 11543  df-dvds 11779  df-gcd 11927  df-prm 12091  df-phi 12194  df-pc 12268  df-lgs 14066
This theorem is referenced by:  lgsdirprm  14102  lgsne0  14106
  Copyright terms: Public domain W3C validator