ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsvalmod GIF version

Theorem lgsvalmod 14423
Description: The Legendre symbol is equivalent to 𝑎↑((𝑝 − 1) / 2), mod 𝑝. This theorem is also called "Euler's criterion", see theorem 9.2 in [ApostolNT] p. 180, or a representation of Euler's criterion using the Legendre symbol, (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
lgsvalmod ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) mod 𝑃) = ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃))

Proof of Theorem lgsvalmod
StepHypRef Expression
1 eldifi 3258 . . . . . . . 8 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
21adantl 277 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 𝑃 ∈ ℙ)
3 prmz 12111 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
42, 3syl 14 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 𝑃 ∈ ℤ)
5 lgscl 14418 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝐴 /L 𝑃) ∈ ℤ)
64, 5syldan 282 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝐴 /L 𝑃) ∈ ℤ)
76peano2zd 9378 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) + 1) ∈ ℤ)
8 zq 9626 . . . 4 (((𝐴 /L 𝑃) + 1) ∈ ℤ → ((𝐴 /L 𝑃) + 1) ∈ ℚ)
97, 8syl 14 . . 3 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) + 1) ∈ ℚ)
10 oddprm 12259 . . . . . . . 8 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ)
1110adantl 277 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝑃 − 1) / 2) ∈ ℕ)
1211nnnn0d 9229 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝑃 − 1) / 2) ∈ ℕ0)
13 zexpcl 10535 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℕ0) → (𝐴↑((𝑃 − 1) / 2)) ∈ ℤ)
1412, 13syldan 282 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝐴↑((𝑃 − 1) / 2)) ∈ ℤ)
1514peano2zd 9378 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴↑((𝑃 − 1) / 2)) + 1) ∈ ℤ)
16 zq 9626 . . . 4 (((𝐴↑((𝑃 − 1) / 2)) + 1) ∈ ℤ → ((𝐴↑((𝑃 − 1) / 2)) + 1) ∈ ℚ)
1715, 16syl 14 . . 3 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴↑((𝑃 − 1) / 2)) + 1) ∈ ℚ)
18 neg1z 9285 . . . 4 -1 ∈ ℤ
19 zq 9626 . . . 4 (-1 ∈ ℤ → -1 ∈ ℚ)
2018, 19mp1i 10 . . 3 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → -1 ∈ ℚ)
21 prmnn 12110 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
222, 21syl 14 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 𝑃 ∈ ℕ)
23 nnq 9633 . . . 4 (𝑃 ∈ ℕ → 𝑃 ∈ ℚ)
2422, 23syl 14 . . 3 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 𝑃 ∈ ℚ)
2522nngt0d 8963 . . 3 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 0 < 𝑃)
26 lgsval3 14422 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝐴 /L 𝑃) = ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1))
2726eqcomd 2183 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) = (𝐴 /L 𝑃))
2815, 22zmodcld 10345 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) ∈ ℕ0)
2928nn0cnd 9231 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) ∈ ℂ)
30 1cnd 7973 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 1 ∈ ℂ)
316zred 9375 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝐴 /L 𝑃) ∈ ℝ)
3231recnd 7986 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝐴 /L 𝑃) ∈ ℂ)
3329, 30, 32subadd2d 8287 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) = (𝐴 /L 𝑃) ↔ ((𝐴 /L 𝑃) + 1) = (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃)))
3427, 33mpbid 147 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) + 1) = (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃))
3534oveq1d 5890 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((𝐴 /L 𝑃) + 1) mod 𝑃) = ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) mod 𝑃))
36 modqabs2 10358 . . . . 5 ((((𝐴↑((𝑃 − 1) / 2)) + 1) ∈ ℚ ∧ 𝑃 ∈ ℚ ∧ 0 < 𝑃) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) mod 𝑃) = (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃))
3717, 24, 25, 36syl3anc 1238 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) mod 𝑃) = (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃))
3835, 37eqtrd 2210 . . 3 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((𝐴 /L 𝑃) + 1) mod 𝑃) = (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃))
399, 17, 20, 24, 25, 38modqadd1 10361 . 2 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((((𝐴 /L 𝑃) + 1) + -1) mod 𝑃) = ((((𝐴↑((𝑃 − 1) / 2)) + 1) + -1) mod 𝑃))
40 peano2re 8093 . . . . . . 7 ((𝐴 /L 𝑃) ∈ ℝ → ((𝐴 /L 𝑃) + 1) ∈ ℝ)
4131, 40syl 14 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) + 1) ∈ ℝ)
4241recnd 7986 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) + 1) ∈ ℂ)
43 ax-1cn 7904 . . . . 5 1 ∈ ℂ
44 negsub 8205 . . . . 5 ((((𝐴 /L 𝑃) + 1) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝐴 /L 𝑃) + 1) + -1) = (((𝐴 /L 𝑃) + 1) − 1))
4542, 43, 44sylancl 413 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((𝐴 /L 𝑃) + 1) + -1) = (((𝐴 /L 𝑃) + 1) − 1))
46 pncan 8163 . . . . 5 (((𝐴 /L 𝑃) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝐴 /L 𝑃) + 1) − 1) = (𝐴 /L 𝑃))
4732, 43, 46sylancl 413 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((𝐴 /L 𝑃) + 1) − 1) = (𝐴 /L 𝑃))
4845, 47eqtrd 2210 . . 3 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((𝐴 /L 𝑃) + 1) + -1) = (𝐴 /L 𝑃))
4948oveq1d 5890 . 2 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((((𝐴 /L 𝑃) + 1) + -1) mod 𝑃) = ((𝐴 /L 𝑃) mod 𝑃))
5014zred 9375 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝐴↑((𝑃 − 1) / 2)) ∈ ℝ)
51 peano2re 8093 . . . . . . 7 ((𝐴↑((𝑃 − 1) / 2)) ∈ ℝ → ((𝐴↑((𝑃 − 1) / 2)) + 1) ∈ ℝ)
5250, 51syl 14 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴↑((𝑃 − 1) / 2)) + 1) ∈ ℝ)
5352recnd 7986 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴↑((𝑃 − 1) / 2)) + 1) ∈ ℂ)
54 negsub 8205 . . . . 5 ((((𝐴↑((𝑃 − 1) / 2)) + 1) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝐴↑((𝑃 − 1) / 2)) + 1) + -1) = (((𝐴↑((𝑃 − 1) / 2)) + 1) − 1))
5553, 43, 54sylancl 413 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((𝐴↑((𝑃 − 1) / 2)) + 1) + -1) = (((𝐴↑((𝑃 − 1) / 2)) + 1) − 1))
5650recnd 7986 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝐴↑((𝑃 − 1) / 2)) ∈ ℂ)
57 pncan 8163 . . . . 5 (((𝐴↑((𝑃 − 1) / 2)) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝐴↑((𝑃 − 1) / 2)) + 1) − 1) = (𝐴↑((𝑃 − 1) / 2)))
5856, 43, 57sylancl 413 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((𝐴↑((𝑃 − 1) / 2)) + 1) − 1) = (𝐴↑((𝑃 − 1) / 2)))
5955, 58eqtrd 2210 . . 3 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((𝐴↑((𝑃 − 1) / 2)) + 1) + -1) = (𝐴↑((𝑃 − 1) / 2)))
6059oveq1d 5890 . 2 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) + -1) mod 𝑃) = ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃))
6139, 49, 603eqtr3d 2218 1 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) mod 𝑃) = ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  cdif 3127  {csn 3593   class class class wbr 4004  (class class class)co 5875  cc 7809  cr 7810  0cc0 7811  1c1 7812   + caddc 7814   < clt 7992  cmin 8128  -cneg 8129   / cdiv 8629  cn 8919  2c2 8970  0cn0 9176  cz 9253  cq 9619   mod cmo 10322  cexp 10519  cprime 12107   /L clgs 14401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-mulrcl 7910  ax-addcom 7911  ax-mulcom 7912  ax-addass 7913  ax-mulass 7914  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-1rid 7918  ax-0id 7919  ax-rnegex 7920  ax-precex 7921  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-apti 7926  ax-pre-ltadd 7927  ax-pre-mulgt0 7928  ax-pre-mulext 7929  ax-arch 7930  ax-caucvg 7931
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-xor 1376  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-if 3536  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-po 4297  df-iso 4298  df-iord 4367  df-on 4369  df-ilim 4370  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-isom 5226  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-recs 6306  df-irdg 6371  df-frec 6392  df-1o 6417  df-2o 6418  df-oadd 6421  df-er 6535  df-en 6741  df-dom 6742  df-fin 6743  df-sup 6983  df-inf 6984  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-reap 8532  df-ap 8539  df-div 8630  df-inn 8920  df-2 8978  df-3 8979  df-4 8980  df-5 8981  df-6 8982  df-7 8983  df-8 8984  df-n0 9177  df-z 9254  df-uz 9529  df-q 9620  df-rp 9654  df-fz 10009  df-fzo 10143  df-fl 10270  df-mod 10323  df-seqfrec 10446  df-exp 10520  df-ihash 10756  df-cj 10851  df-re 10852  df-im 10853  df-rsqrt 11007  df-abs 11008  df-clim 11287  df-proddc 11559  df-dvds 11795  df-gcd 11944  df-prm 12108  df-phi 12211  df-pc 12285  df-lgs 14402
This theorem is referenced by:  lgsdirprm  14438  lgsne0  14442
  Copyright terms: Public domain W3C validator